
Introduction

Advanced Computer Networks

Summer Semester 2014

Organizational Information

o https://wiki.net.informatik.uni-

goettingen.de/wiki/Advanced_Computer_Networks_(Summer_2014)

o Slides are available online

o Course is held in English

o AI: 6 ECTS credits (old + new PO)

o M.Inf.1222.Mp, M.Inf.1223.Mp, M.Inf.221.3C1

o ITIS: 5 credits, Module number 3.17

https://wiki.net.informatik.uni-goettingen.de/wiki/Advanced_Computer_Networks_(Summer_2012)
https://wiki.net.informatik.uni-goettingen.de/wiki/Advanced_Computer_Networks_(Summer_2012)
https://wiki.net.informatik.uni-goettingen.de/wiki/Advanced_Computer_Networks_(Summer_2012)

Organizational Information

o Exam: 2014-07-24

o Either written or oral (depending on number of

attendees)

o Check the FlexNow registration deadlines

Course Overview

o This course covers (currently):

o P2P and Overlay Networks

o Cloud Computing

o Content Centric Networking (CCN)

o Advanced Wireless Communications

o Social Network Analysis

o Please note that the slides are subject to change.

Before the exam, please check again the wiki for

updated slides and other info!

Course Overview

o Session I: Introduction & P2P Networks (Koll)

o II: Cloud Computing I (Koll)

o III: Cloud Computing II (Koll)

o IV: Cloud Computing III (Koll)

o V: Information Centric Networking I (Dr. Arumaithurai)

o VI: Information Centric Networking II (Dr. Arumaithurai)

o VII: Information Centric Networking III (Dr. Arumaithurai)

o VIII: Wireless I (Dr. Sigg)

o IX: Wireless II (Dr. Sigg)

o X: Social Networks I (Prof. Fu)

o XI: Social Networks II (Prof. Fu)

Course Materials - Basics

o J. Kurose and K. Ross, "Computer

Networking: A Top-Down Approach

Featuring the Internet“ (some slides are

based on the book)

o A. S. Tanenbaum, "Computer Networks“

o A recap of the basics:

https://wiki.net.informatik.uni-

goettingen.de/wiki/Computer_Networks_(

Winter_2013/2014)

o Further materials

are released on the

wiki

https://wiki.net.informatik.uni-goettingen.de/wiki/Computer_Networks_(Winter_2013/2014)
https://wiki.net.informatik.uni-goettingen.de/wiki/Computer_Networks_(Winter_2013/2014)
https://wiki.net.informatik.uni-goettingen.de/wiki/Computer_Networks_(Winter_2013/2014)
https://wiki.net.informatik.uni-goettingen.de/wiki/Computer_Networks_(Winter_2013/2014)

Introduction to P2P Systems

C. Schindelhauer, Peer-to-Peer

Netzwerke (german)

Today‘s lecture will cover…

o What?

o What is a P2P system?

o Why?

o Why do we need P2P systems?

o How?

o How are P2P systems working?

What is P2P?

What is a P2P System?
o Peer-to-peer (abbreviated to P2P) refers to a computer network in

which each computer in the network can act as a client or server

for the other computers in the network, allowing shared access to

files and peripherals without the need for a central server [Wiki]

o The sharing of computer resources by direct exchange, rather

than requiring the intermediation of a centralized server.

Features

o Decentralized:

o No central component

o Role: “all peers are equal”

o Self-organized

o Highly dynamic behavior of nodes:

• Free to come, free to go

o Overlay Network
• A network built on the top of physical network

• Nodes are connected by logical links

• Flat system architecture

Bob

Alice

Mike

Features (Cont.)

o Large-scale resources

o Heterogeneous

o Millions of nodes

o Collaboration

o Based on voluntary participation

o Global reach

o Flexible, resilient to attacks, anonymous

o …

Why P2P?

Resource Requirements

o Text, email: 100 KB

o Picture: 1MB

o Music: 10MB

o Movie: 1GB

o HD Video: 10GB+

Resource Requirements

o 2004: More than half of Internet traffic P2P

o 2010: Still 39%, 2014: ~20%

o Absolute P2P traffic increases (by 100%

2010-2014)

Developing of Network

Bandwidth

o Maximum bandwidth of common

Internet access technologies

[Wiki]

o Current network bandwidth

cannot satisfy user demand

o Need a more efficient way to

share resources

Client/Server

o The client arrives and requests a service at

any given point in time

o The server is dedicated to the service and

responds to the client

Apple.com

Problems
• Hot spot-uneven workload
• Bottleneck: bandwidth, CPU, …
• Single point of failure
• Scalability
• Maintenance

Replication

o Server Replication

Apple.com
Apple.com
(Mirror)

Apple.com
(Mirror)

Problems
• Hot spot-uneven workload
• Bottleneck: bandwidth, CPU, …
• Single point of failure
• Scalability
• Maintenance

Proxy, CDN
Apple.com IBM.com Microsoft.com

Problems
• Hot spot-uneven workload
• Bottleneck: bandwidth, CPU, …
• Single point of failure
• Scalability
• Maintenance

P2P: Advantages

o Changes the way of network bandwidth use

o Easy to deploy, easy to use

o Dynamic for joining and leaving

o Distributed resource sharing

o Files, data, storage, computation, …

o Provide something useful and free

o Anyone can contribute

o Fault tolerant

o Service ability: large scale

o Service of quality: the more users, the better

P2P: How?

P2P Applications and Systems
o File sharing

o Napster, Gnutella, BitTorrent

o Multimedia streaming

o P2P TV: PeerCast, PPlive, PPStream, TVU, Zattoo, ….

o P2P based VOD systems

o Communication

o Skype, MSN, …

o Computation

o SETI@home: Search for Extra-Terrestrial Intelligence

• In late 2009: 700 TeraFLOPS computational power (250k active

users on average)

Current State of P2P

o P2P applications are popular over the world

o P2P networks are mainly used for resource

sharing

o Music, videos, software, …

o Some are illegal copyrighted materials

o New emerging applications

o Online media streaming, P2P TV

o P2P telephone system

o Software installation and update

o Decentralized social network applications

Typical Research Topics

o Structure

o How to search for information

• Unstructured P2P

• Structured P2P

o Security and privacy

o How to protect system security and user privacy?

o Legal issues

Search in P2P Networks

o How to locate resources in P2P networks?

Information Retrieval System

o Keyword-based against a central server

Search in P2P Networks?

o Unstructured P2P

o Highly flexible, dynamic, easy to maintain

o Hard to find information

o Structured P2P

o Hard to maintain its structure

o Easy to find information

Unstructured P2P Networks

Unstructured P2P Networks

o Example: BitTorrent

o Successor of Napster, Gnutella, …

o Napster: Pioneer P2P, shut down in 2001

• easy to manage and search, but relied on central lookup

server (drawbacks?)

• data transfer directly between peers

o Gnutella: Answer to Napster weaknesses

• fully distributed P2P network based on overlay network,

no central server

• Search: flooding the network with request (drawbacks?)

BitTorrent

o A popular approach to sharing large files

o Origin of 37% of German internet traffic in 2009

o Originally used for distributing legal content

o Linux distributions, software updates

o Official movies

o Goal:

o Quickly and reliably replicate one file to a large

number of clients

o Call it “P2P content distribution”

Basic Idea

o Chunking:

o Files split into smaller pieces or chunks

o Chunks can be downloaded in parallel

o Downloading order does not matter

o Swarming

o Clients join a crowd of peers uploading and

downloading the same content

o Nodes request chunks from neighbors and

download content in parallel

o Use a web server to publish content

o Use a central unit to locate resource

Basic Idea

Basic Components
o Web server: for content publication

o Tracker: a special central server for running

the content distribution system

o Tracking active peers

o Mapping from file name to peers

o Peer

o Seed: a peer with a complete copy of the file

o Leecher: peer still downloading the file

o “.torrent” file: metadata and description of the

file

o The number of chunks

o The tracker’s IP

Operation

o Sharing a file:
o (1) Seed generates a “.torrent” file from the file

o (2) Upload the “.torrent” file to some public web server or sending it to

friends by email

o Searching a file:
o No dedicate search component

o User can search “.torrent” file from web server

o Downloading a file:
o (1) Download the “.torrent” file

o (2) Connect to the tracker to locate the file

o (3) Choose some fast peers to download chunks in parallel

Tit-for-Tat Policy and Chunk

Selection

o Tit-for-Tat policy

o The more you give, the more you get

o A peer serves peers that serve it

o Encourages cooperation, discourage free-riding

o Chunk selection

o Peers uses rarest first policy when downloading

chunks

o Having a rare chunk makes peer attractive to

others

o The goal is to maximize availability of each chunk

BitTorrent : Pros and Cons

o Strengths

o Works well for “hot content”, very fast and resilient

o Proficient in utilizing partially downloaded files

o Discourages “free-riding”

o Efficient for distributing large files to a large

number of clients

o Weaknesses

o Assumes all interested peers active at same time

o Tracker could be single point of failure

o Lack of search feature

Structured P2P Networks

Structured P2P Networks

o Routing & Lookup

o DHTs

o The following slides are based on a lecture by Prof. Roscoe,

ETH Zürich, and provided with his kind permission

Problem Space

o Challenge: spread lookup database among

P2P participants

o Goals:

o Scalable – operates with millions of nodes

o Self-organized – no central, external control

o Load-distributing – every member should

contribute (at least ideally)

o Fault tolerant – robust against node leaves or

failures

o Robustness – resiliance against malicious activity

Idea
o Distributed Hash Tables

o Hash content identifiers to machines

o Hash IP addresses

o Store content (or content locator) at machine with

closest hash value

o Originally 4 papers submitted to SIGCOMM

2001:

o CAN, Chord, Pastry, Tapestry

o Widely used in practice (e.g., BitTorrent uses

Kademlia DHT)

Background: Hash Functions

o Hash function maps arbitrary input sequence to fixed

length output:

o H(m) = x, x of fixed length

o Crypto-Hashes:

o Small input changes result in large output changes

(Avalanche criterium)

o If H(m1) = x is known, it is hard to find another m2 giving

H(m2) = x (collision resistant)

o Inherently hash functions span whole 2k space (k bits

hash length)

MD5 / SHA-1

o Message Digest Algorithm 5

o 128 bit hash values

o Weak collisions found

o SHA-1 (similar to MD4)

o 160 bit hash values

o Stronger than MD5, but „under researcher‘s attack“: find

collisions in 269

o But: Both algorithms efficiently map input

homogeniously to 2k space

DHTs

o Index data by hash value

o Assign each node in the network a portion of

the hash address space

o DHT provides the lookup function

Example: Chord

o Published 2001 at SIGCOMM by Stoica et al. „Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications”

o Keys are SHA-1 hashes – 160 bit identifiers

o Key: Identifier of a data item

o Value: Identifier of a node

o Host (key,value) pair at node with ID larger or

equal to key – successor(key)

Identifier Space

o Identifier in 24 space

o Space from 0..15

o Nodes pick IDs:

• 2,5,6,11,14 covered by nodes

• Remaining values are not

directly covered by a node

Successor

o First node in clockwise direction with ID larger

or equal the key

o Examples:

o succ(6) = 6

o succ(12) = 14

o succ(15) = 2

How to store and locate data?

o Each (key,value) pair is assigned the

identifier H(key)

o Each item is stored at

its succ(H(key))

Drink Location H(Drink)

Beer Göttingen 12

Wine France 2

Whisky Scotland 9

Wodka Russia 14

Successor Pointer

o Each node points to its successor

o Known as node‘s succ

pointer

o Example:

o 0‘s succ = 2

o 2‘s succ = 5

o ...

Basic Lookup of Data

o Lookup key:

o Calculate H(key)

o Follow succ pointers until key is found

o Lookup time: O(n)

o Example:

o „Where can I drink Whisky?“

o Calculate H(Whisky) = 9

o Traverse nodes:

• 2,5,6,11

o Return „Scotland“

Scalable Lookup

o Each node maintains finger table (max k entries)

o for i in 0..k-1: finger[i] = succ(n+2i-1)

o Point to succ(n+1)

o Point to succ(n+2)

o Point to succ(n+4)

o ...

o Point to succ(n+2i-1)

o Makes lookup time logarithmic!

o O(log n)

Routing

o Determines the next hop

o Each node n knows

succ(n+2i-1) for all i=1..k

o Forward queries for key

to then highest

predecessor of key

o Routing entries = log2(n)
k=4, n=16

Routing cont‘d

o Routing table size l

o Node 9 was the

highest 1 could

reach

o Node 9 is querying

again, finger to 13 is

best

k=4, n=16

Routing cont‘d

o 13 is handled by 14

o 14 completes the

route:

o 15 is found at 0

Routing cont‘d

o From node 1, 3 hops to node 0 where item 15

is stored

o k=4 equals an ID space of 16, therefore the

maximum number of hops is:

o Log2(16) = 4

o Average complexity is ½ log(n)

Routing cont‘d

o Such routing algorithms solve the lookup problem

o General concept:

o Each node has only a limited view on the network

o A node that receives a message containing a destination ID

that is not managed by that node, it just forwards the request

to the closest hop

o Here, algorithm is based on numeric closeness

o In Gummadi et al., „The Impact of DHT Routing

Geometry on Resilience and Proximity“, SIGCOMM

2003, implications are discussed

Recursive vs. Iterative Lookup

o Recursive: Each node forwards the request

(as shown) to the next hop

o Fast, efficient

o Each node can optimize forwarding

o Iterative: The requesting client queries the

next hop iteratively from the nodes

o Allows the lookup client to keep in control

o Lookup client detects and localizes failures

Achieved goals

o The DHT is scalable, as operations are

performed in log(n)

o It is self-organized as each node directly

knows its position (thanks to the hash

function) and learns about the next hops

o On average load-distributing

o What about joins and especially leaves?

Node Join and Leave

o Node join:

1. Bootstrap: a new node contacts a known node in the DHT

2. The new node gets a partion of the address space

3. Routing information is updated

4. The new node retrieves all tuples for which it is responsible

o Node departure:

o Replication and load balancing

o Node failure:

o Reactive or proactive recovery

o Maintenance, load balancing, redistribution of tuples

o Data is lost if not replicated!

Node Join and Leave

o Join:

o Lookup of own ID‘s successor

o Contact that to get successors

and predecessor

o Leaves:

o Ping successors regularly

o Always ensure x live nodes in

successor set

o Thereby, failures are treated

as „normal“

Node Join Example

o Assume node 9 joins

Node Join Example cont’d

o The new node takes

over the docs in its

“responsibility” range

o Docs 9,8 from

its successor

Node Leave

o Assume node 12

leaves gracefully

Node Leave cont’d

o Data is transferred to

succ(12) = 14

o Node 12 informs

predecessor and

successor, who

update their

finger tables

Direct vs. Indirect Storage

o Direct storage:

o Actual data is stored at the node responsible for it

o The data is copied towards the responsible node upon node

join

o The node that contributed the data can leave without loss of

its data

o But: High storage and communication overhead!

o Indirect storage:

o Instead of data, the references to the data are stored

o The inserting node keeps the data

o Lower load on the DHT

The Fragile Ring

o Problem: Everything is

organized in a fragile ring

structure

o Failure of a node breaks

the ring and data is lost

o No way to recover as

previous predecessor and

successor don’t know

about each other!

Successor Sets

o As a solution, each node keeps:

o A Successor set with pointers to the r

closest successors

o Predecessor pointer

o If successor fails, replace

with closest alive successor

o If predecessor fails, set

pointer to nil

o Replicate objects throughout

the successor set

Further Challenges

o How does a node learn its:

o Predecessors?

o Fingers?

o What if “better” fingers come along later?

o How would a node find out?

o How does a node react to failing or leaving

fingers?

o All basically the same problem

Periodic Stabilization

o Used to make pointers eventually correct

o Requires an additional predecessor pointer

o First node met in anti-clockwise direction starting at n-1

o A node n joins the DHT through a node o:

o Find n’s successor by lookup(n)

o n sets its successor to the found successor

o Stabilization fixes the rest

• stabilize() function is run peridically by each node

o The new node does not determine its predecessor: its

predecessor detects and fixes inconsistencies

Periodic Stabilization Example

1. 9 joins through node 0

2. 9 sets its predecessor to nil

3. 9 asks 0 for succ(9). Receives “12”

4. 9 sets its succ to 12

Periodic Stabilization Example

o 9 runs stabilize()

1. 9 asks 12 for its

predecessor

2. 12 replies with “7”

3. 9 notifies 12 that 9

is now its

predecessor

Periodic Stabilization Example

o 7 runs stabilize()

1. 7 discovers from 12

that pred(12) is now 9

2. 7 sets successor to 9

3. 7 notifies 9

4. 9 sets pred(9) to 7

Chord in a “Tree View”

o Finger tables are Chord’s core

o Providing O(log n) hop routing by at least halving

the distance to the target by each hop

o Forest of binomial trees rooted at each key

Chord - Conclusion

o Lookup time: O(log n)

o Drawbacks:

o Rigidity

• Complicates recovery from failed nodes and routing table

• Precludes proximity-based routing

o Unidirectional routing

o Incoming traffic is not used to re-enforce routing

tables

o Fault-tolerant, but not very robust.

Other DHTs

o Kademlia (used in BitTorrent)

o Lookup also done in O(log n) – as with most DHTs

o Uses distance between two nodes: XOR of both

nodes’ IDs

o Nodes still responsible for a part of ID space

o Location of content basically the same as in Chord

• Node closest to searched ID

• O(log n) since XOR can halve distance at each hop

• Note: This distance is not geographical

o For details: Maymounkov and Mazières, Kademlia: “A Peer-

to-peer Information System Based on the XOR metric”, 2002

References

o [1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A

survey of peer-to-peer content distribution technologies. ACM

Comput. Surv. 36(4), 335-371. 2004.

o [2] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert

Morris, and Ion Stoica. Looking up data in p2p systems. Comm.

ACM 46,2(Feb.), 43–48. 2003.

o [4] Pouwelse, Johan; et al. "The Bittorrent P2P File-Sharing

System: Measurements and Analysis". Peer-to-Peer Systems IV.

Berlin: Springer. pp. 205–216. 2005.

o [5] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun, The

Akamai Network: A Platform for High-Performance Internet

Applications, ACM SIGOPS Operating Systems Review, Vol. 44,

No.3, July 2010.

