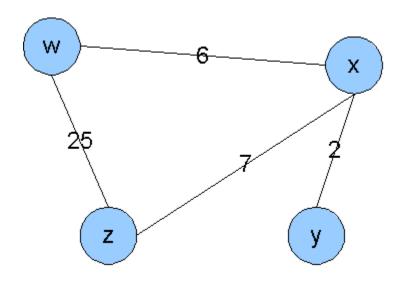

Homework #5

(Due on November 23th 2017)


Q1. Given the following network, use Dijkstra's algorithm to find the least cost paths from node u. Please provide a table showing the steps of the algorithm, a graph showing the resulting shortest-path tree from u and the final forwarding table of u.

Step	N'	D (v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)	D(z), p(z)

Resulting shortest-path tree V W Resulting forwarding table in u Destination Link Z V

Q2. Given the following network, use the Distance Vector algorithm to find the least cost paths for all nodes. Fill the provided tables and indicate with arrows between the tables when a node sends a distance vector to another node.

Computer Networks Group University of Göttingen, Germany

No	Node		cost to				de		cos	t to		No	de		cos	t to		No	de		cos	st to	
W		w	X	y	Z	W		W	X	y	Z	W		W	X	y	Z	W		w	X	y	Z
	w						w						w						w				
m	X					m	X					m	X					m	X				
from	у					from	у					from	y					from	у				
	Z						Z						Z						Z				

No	Node x		cost to				de		cos	t to		No	de		cos	t to		No	de		cos	st to	
3			X	y	z	X		W	X	y	Z	X	(W	$\mathbf{x} \mathbf{x} \mathbf{y}$		Z	X		w	X	y	z
	w						w						w						w				
m	X					from	X					E	X					m	X				
from	у					frc	у					from	у					from	у				
	Z						Z						Z						Z				

No	Node		cost to			No	de	cost to				No	de	cost to				Node		cost to				
y		W	X	y	Z	3	7	W	X	y	Z	y		W	X	y	Z	y		w	X	y	Z	
	w						w						w						w					
from	X					m	X					E	X					m	X					
fro	у					from	у					from	у					from	у					
	Z						Z						Z						Z					

No	Node z		cost to				de	cost to			No	de		cos	t to		No	de		cost to					
7			X	y	Z	Z		W	X	y	Z	7	7	W	X	y z		Z		w	X	y	Z		
	w						w						w						w						
m	X					ш	X					Ħ	X					m	X						
from	y					from	y					from	y					from	y						
	Z						Z						Z						Z						

Computer Networks Group University of Göttingen, Germany

- Q3. Compare Link State routing algorithms to Distance Vector algorithms in terms of scalability and robustness.
- Q4. Explain the count-to-infinity problem using a simple example. How can this problem be avoided?
- Q5. How are routing policies used in BGP. Give one example.
- Q6. What is the difference between Intra-AS and Inter-AS routing? Why are different routing protocols needed for each? Name one example for each category.