
Exercise 3

Narisu Tao 15 Nov. 2012

Switch Learning Process

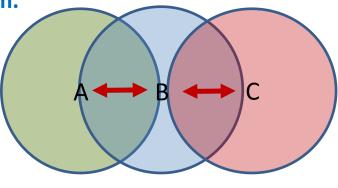
Q1: Please briefly describe the learning process that a switch uses to fill its table.

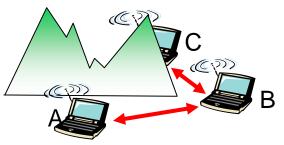
Hubs, Switches, Routers...

Q2: What are the main purposes of the following devices: hub, switch, and router? What are the differences between a switch and a router?

	Hub	Switch	Router
Belong to Which layer?	1 physical layer; repeat bits	2 link layer; filter and forward frame	3 network layer; deliver datagram
Can isolate frame collision	No	Yes	Yes
Can be used to connect different Ethernet thenologies	No	Yes	Yes
Multiple access protocol	No	Yes	?
Speed	1	2	3
Plug and play	Yes	Yes	No
Firewall protection	No	No	Yes
Shortest path	**	No	Yes

PPP Requirements

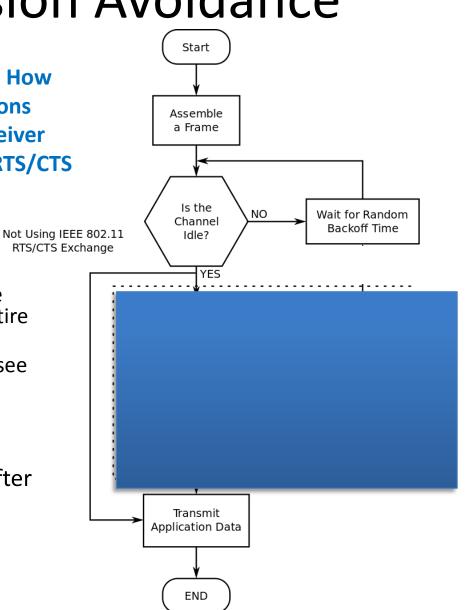

Q3: Why does PPP not need to provide error correction/recovery, flow control, etc.?


- Concept of Layering:
 - Error correction/recovery, flow control, delivery order are all delegated to the upper layers
- That means: PPP only responsible for
 - Framing of packets arriving from upper layer
 - Detection of data errors
 - Detection of link failure

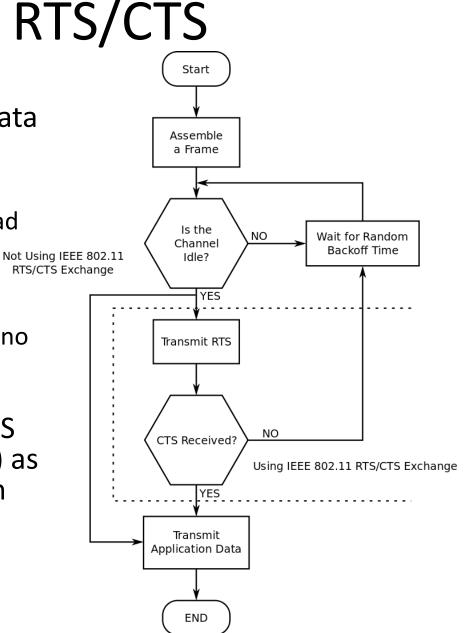
Hidden Terminal Problem

Q4: Please explain the Hidden Terminal Problem.

- Appears in wireless networks
 - Two nodes that are not visible to each other (A,C) try to communicate to a node (e.g., an AP) visible to both (B) at the same time -> interference
- Need a solution that limits collisions
 - RTS/CTS in CSMA/CA
- Contrary Effect: Exposed Station Problem
 - Imagine B sending to A, C wants to send to D (out of range of B)
 - C waits for A,B finishing their communication (-> unnecessary)



CSMA/CA Collision Avoidance


Q5: Consider the IEEE 802.11 MAC Protocol: How does CSMA/CA tackle the problem of collisions (what steps are taken at the sender and receiver respectively)? What is the idea behind the RTS/CTS concept?

- Sender:
 - Sense channel
 - If idle for a certain amount of time (802.11: DIFS, ~50 μs) transmit entire frame
 - If busy, start exponential backoff (see last weeks exercise)
- Receiver:
 - If frame received OK, return ACK after waiting a certain amount of time (802.11: SIFS, ~10 μs)
 - Hidden terminal problem

CSMA/CA RTS/CTS

- Goal: Avoid collsions of large data frames
- Idea:
 - Use reservation of channel instead of random access
 - Allow collisions of reservation packets (small!)
 - Only reservation packets collide, no data frames!
- Solution: Sender transmits Request-To-Send (RTS) to BS, BS broadcasts Clear-To-Send (CTS) as answer (notifies other nodes in range that channel is busy)

