Reclaiming the Brain:
Useful OpenFlow Functions in the Data Plane

Liron Schiff<t, Michael Borokhovich?, Stefan Schmid?

1 Tel Aviv University, Israel; 2 University of Texas at Austin, United States; 3 TU Berlin & T-Labs, Germany

ABSTRACT

Software-defined networks (SDNs) have the potential to rad-
ically simplify the network management by providing a
programmatic interface to a logically centralized controller.
However, outsourcing the management to the software con-
troller comes at a price, and good tradeoffs have to be found
between the benefits of a fine-grained control and its costs.

In this paper, we show that OpenFlow, the predominant
SDN protocol, allows to implement powerful functions “in
the south”, i.e., in the data plane. Our approach, called
SmartSouth, can be used to reduce interactions with the
control plane as well as to make the network more ro-
bust. Moreover, while rendering the data plane “smarter”,
SmartSouth only relies on the standard OpenFlow match-
action paradigm; thus, the data plane functions remain for-
mally verifiable—a key benefit of SDN. To demonstrate the
potential of SmartSouth, we discuss four basic applica-
tions: (1) topology snapshot, (2) anycast, (3) blackhole- and
(4) critical node detection.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]|: Net-
work Protocols

General Terms

Algorithms, Performance

Keywords
In-band Mechanisms; SDN; Troubleshooting

*Supported by the European Research Council (ERC) Start-
ing Grant no. 259085 and by the Israel Science Foundation
Grant no. 1386/11.

TSupported in part by the FP7 UNIFY EU project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

HotNets-XIII, October 27-28, 2014, Los Angeles, CA, USA.

Copyright 2014 ACM 978-1-4503-3256-9/14/10 -$15.00.
http://dx.doi.org/10.1145/2670518.2673873 .

1. INTRODUCTION

Software-defined networks (SDNs) expose an API
which facilitates the programmatic network manage-
ment from a logically centralized software controller.
This API also allows to split the network into a “dumb”
data plane whose main purpose is to process and forward
packets according to the rules installed by the network
operating system, i.e., the “smart” controllers in the
control plane.

While software-defined networking is a promising
paradigm which can simplify and automate the net-
work management, the separation of the control plane
from the data plane comes with limitations and over-
heads. For instance, a fine-grained and reactive control
of the data plane can induce high communication and
computation cost in the control plane, constraining scal-
ability 5, |7} 9], and introducing undesirable latencies [10),
16]. Indeed, in an SDN, the controller typically only
has an imperfect visibility of the data plane and its
events, which can render troubleshooting more challeng-
ing [4}|6]; sometimes, data plane elements may even lose
connectivity to the control plane entirely [13].

Accordingly, there is an ongoing debate on the granu-
larity of control and visibility which should be supported
in the control plane as well as the functionality which
should be kept in the data plane. [5] For example, newer
versions of OpenFlow introduce local fast failover mech-
anisms which allow the data plane to quickly react to
failures, without the interaction of the control plane; the
control plane can improve the resulting flow allocation
and network configuration in a second stage. |10} (12} 15|

Interestingly, while the question of which functionality
should be provided in the data plane (and at what
granularity) is discussed intensively today (e.g., [5} 7} [10,
17]), surprisingly little is known about the fundamental
question of what functionality can be implemented using
the current OpenFlow protocol.

Our Contribution. While the study and design of
in-band mechanisms obviously have a long tradition [18|
19], to the best of our knowledge, this paper is the first
to point out the potentially rich functionality of an ez-
isting OpenFlow data plane. By additionally leveraging

the OpenFlow fast failover mechanism, the data plane
functions can also be made robust to failures. Thus, such
functionality may not only be attractive to reduce the
load on the control plane, but may also be used to pro-
vide critical information to troubleshooting applications
in a resilient manner.

The approach introduced in this paper relies on a sim-
ple template called SmartSouth. While SmartSouth
renders the data plane, the “south”, smarter, it does not
assume any new hardware or protocol features (beyond
OpenFlow 1.3). This is interesting, as it allows to keep
the data plane and its forwarding state formally verifi-
able, that is: the key benefits and philosophy of SDN
are preserved.

To demonstrate the possible applications of our mech-
anism, we present four concrete data plane functions.

1. Snapshot: The snapshot function allows to collect
a view of the current network topology. The snap-
shot service is fault-tolerant in the sense that it
does not assume any knowledge about the underly-
ing network, nor direct connectivity to controllers
(unlike, e.g. TopologyService [1]).

2. Anycast: The anycast function supports the specifi-
cation of multiple legal destinations (e.g., different
nodes providing the same functionality). If any
of these destinations can be reached, the packet
will be delivered. The anycast function can also
be extended to support priorities over destinations
(e.g., first only the destination with the highest pri-
ority is tried), or to specify entire service chains [11}
14] (e.g., a set of middleboxes which need to be
traversed). The anycast service can for example
be useful to find an alternative in-band path to a
given controller after link failures, or to find a path
to an alternative (and close) controller in case the
control plane is distributed |7, |17].

3. Blackhole Identification: Blackholes, also known
as “silent failures”, especially occur in evolving
networks. [8] The blackhole identification function
allows us to actively discover blackholes, and to
raise an alarm whenever end-to-end connectivity
is disrupted, regardless of the cause. As we will
show, we cannot only detect elements that drop
every packet, but we can also monitor packet-loss
at network links. As we will see, the blackhole
identification function is an example of a service
which needs some limited interaction between the
“smart” data plane and the controller.

4. Crritical Node Detection: The critical node detec-
tion function determines whether a certain node
in the network is critical for the connectivity of
the underlying physical network. (Or could, e.g.,
be removed or turned off for maintenance or en-
ergy conservation purposes.) While a critical node

could also be detected using the snapshot function,
computing the entire snapshot is costly and, as we
will see, not needed.

Background and Model. The SDN network oper-
ating system consists of a control software running on a
set of servers. These controllers receive information and
statistics from switches, and depending on this informa-
tion as well as the policies they seek to implement, issue
instructions to the switches.

OpenFlow, the standard SDN protocol today, follows
a match-action paradigm: The controllers install rules
on the switches which consist of a match and an action
part; the packets (i.e., flows) matching a rule are subject
to the corresponding action. That is, each switch stores
a set of tables which are managed by the controllers, and
each table consists of a set of flow entries which specify
expressions that need to be matched against the packet
headers, as well as actions that are applied to the packet
when a given expression is satisfied. Possible actions
include dropping the packet, sending it to a given egress
port, or modifying it, e.g., adding a tag. Indeed, the
mechanisms presented in this paper will make use of
the tagging mechanism to equip packet instances with
meta-information.

Concretely, each switch has multiple flow tables and
a group table. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match
fields, counters, and an ordered list of action buckets.
Each action bucket contains a set of actions to execute,
and provides the ability to define multiple forwarding
behaviors. The group table consists of multiple groups,
where different groups can have different types. For
instance, the type ALL can be used to execute all buckets
in the group; and the fast failover type FF can be used
to render data plane mechanisms robust: a bucket in
this table is associated with a parameter that determines
whether the bucket is live; a switch will always forward
traffic to the first live bucket. To determine liveness, the
programmer specifies an output port.

2. THE SMARTSOUTH MECHANISM

The data plane functions presented in this paper are
realized in two stages. In the first stage, the “offline
stage”, the OpenFlow tables are installed at the switches,
implementing the desired functionality. In the second
stage, the “runtime stage”, the distributed data plane
function is executed: the execution is triggered by the
injection of certain requests (henceforth sometimes called
the trigger packet). Depending on the application, the
second stage does not require any or only very limited
controller interactions, i.e., no modifications to the data
plane configuration are made.

All data plane functions presented in this paper
are based on a simple template, henceforth called
SmartSouth. SmartSouth is essentially an in-band

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.

The SmartSouth template is summarized in Algo-
rithm [1} It is parametrized with different service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v;.par), as
well as the port of the neighbor it is currently visiting
(pkt.v;.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by A;, and
assume that all the tag fields are initialized to 0. When
a node 7 sees a packet for the first time, it sets pkt.v;.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v;.cur < 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.

Note that since the underlying network topology is
typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v;.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.

In addition, each data plane service that we will de-
scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the different stages of SmartSouth. The first function
is First_visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth — Template

Input: current node: wv;, input port: in, packet global
params: pkt.start, packet tag array: {pkt.v;};jem]
Output: output port: out

1. if pkt.start =0 then
2. pkt.start + 1
3: out <1
4: else
5: if pkt.v;.cur = 0 then
6: pkt.vi.par < in; out < 1; First_visit()
7 else if in = pkt.v;.cur then
8: out < pkt.v;.cur + 1; Visit_from_cur()
9: else
10: out + in; Visit_not_from_cur()
11: goto [20]
12: if out = A; +1 then
13: out < pkt.v;.par
14: goto [22]

15: while out failed or out = pkt.v;.par do
16: out < out + 1

17: if out = A; + 1 then

18: out < pkt.v;.par

19: goto [22]

20: Send_next_neighbor()
21: goto[23]

22: Send_parent()

23: pkt.v;.cur < out

24: if out = 0 then

25: Finish()

26: return out

for the first time. The function Visit_not_from_cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
different from pkt.v;.cur. The Send_next_neighbor()
function is called when a node ¢ has received a packet
from the “expected” port (i.e., pkt.v;.cur), and forwards
it to the next neighbor, and the Send_parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES

To demonstrate the power of SmartSouth data plane
functions, we present four case studies. See Table [I] for
details of these implementations.

3.1 Snapshots

The computation of topological snapshots is a fun-
damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is sufficient space in the packet to include a full snapshot;

we will later discuss how the OpenFlow data plane can
also split the snapshot across multiple packets if needed.

We extend SmartSouth as follows: 1) record node
ids and in-ports each time a node is visited; 2) record
out-ports before the node is left. This can be achieved by
writing to the reserved space in the packet header (pos-
sibly using a counter to find the next available location)
or by pushing labels, each time it visits a node.

Our approach tracks edges that are not describing
parent-child relationships in the tree twice. To save
packet header space we distinguish between the two
visits. We split the Visit_not_from_cur() function into
two sub-cases depending on whether in < pkt.v;.cur or
not. If in < pkt.v;.cur then node ¢ has already used
the incoming port itself, and hence the packet is now re-
ceived from an ancestor which is not the parent of node
i. We handle this case by deleting the tracking made by
the sender (pop()) instead of applying the default behav-
ior of adding more tracking information. In the second
sub-case, we apply the default behavior. Notice also that
if node 7 has already finished traversing its neighbors
and sent the packet to its parent, its pkt.v;.cur is set to
pkt.v;.par, which may affect the in < pkt.v;.cur compar-
ison. Thus, in the case where pkt.v;.cur = pkt.v;.par,
we act as if in < pkt.v;.cur. Note that comparing two
fields is not directly supported by OpenFlow but it can
be implemented with a dedicated flow tables [2].

Remarks. If the snapshot of a large network does
not fit into a single packet, data plane mechanisms can
be implemented to split a packet into multiple smaller
ones. All we have to do is to track the amount of data
gathered so far (e.g. using special counter) and, when
needed, we send the packet to the controller.

3.2 Anycast

Anycast provides the possibility to send a message to
any node in a specified group of potential receivers R.
Such a function could for example be used to ensure that
a packet always passes through a node providing certain
functionality (e.g., deep packet inspection); another ap-
plication is a distributed control plane [7| [17] where a
packet must reach a close controller. Anycasts can easily
be chained, in the sense that sequences of middleboxes
can be specified which need to be traversed. [14]

The anycast can be realized by introducing a field
named gid in the anycast message that stores the id of
the anycast group. Concretely, we add a simple test at
the beginning of the SmartSouth template. In every
node 1, this test tries to match all ids of groups that ¢
belongs to, and a successful match triggers the forward-
ing of the packet to a predefined (“self”) port; otherwise,
the remainder of the traversal code is executed, allowing
the packet to reach all available nodes until a relevant
receiver is found. This can easily be translated to flow
table rules: for each group id we have an entry in the

first flow table that matches the packet gid field with
the relevant group id.

The anycast function can also be extended to support
priorities p; giq over destinations v; € R where R has
id gid: i.e., destinations are tried in decreasing priority
order. We name this extension priocast. For instance,
priocast could be useful to find an alternative in-band
path to the controller, if the management port of the
controller cannot be reached.

We implement priocast by making two phase traver-
sals: in the first phase, the optimal receiver is computed
by having each possible receiver updating the currently
best receiver id in the packet. In the second phase,
the root issues a second traversal in order to direct the
packet to the optimal receiver found in the previous
phase. The priocast service can be realized by modify-
ing SmartSouth as follows (see Table[I)). We introduce
two new packet fields named opt_id and opt_val which
are used to store the id of the best receiver found so far,
as well as its priority. Moreover, we extend the start
field to be ternary, holding the current phase, where 0
represents, as before, an uninitialized search. We use
these fields in the following way: if start is 1, we match
at any node i, the gid packet field to all group ids that ¢
belongs to (represented by GID.S; in the pseudo code);
in the case of a successful match to id, gid of group
R, we check whether ¢ has a higher priority than the
best node found so far, i.e., p; gia > opt_val. In case
the inequality holds, we update opt_id and opt_val with
values ¢ and p; 4i4 respectively. In any case, we continue
the traversal to allow consideration of all nodes. The
Finish() function in the start = 1 case is used to set
start to 2, and begin a new traversal by setting the next
out port to the first one used in the first traversal.

Non-root nodes detect the phase switch by matching
the in-port to its parent field (which can happen only
when an additional traversal starts). In this case out is
initialized to 1 and the processing is similar to the first
visit case. Moreover, in the second phase each node i
checks whether it is the optimal receiver, i.e. i = opt_id,
and if this is the case, it outputs the packet to (port)
“self”. If the test fails, the node continues the traversal,
eventually reaching the optimal receiver.

3.3 Blackhole Detection

Modern multi-layer networks face the challenge of
“silent failures”, failures which are not observed directly.
Such blackholes may arise due to physical failure, config-
uration errors, or general unsupervised carrier network
errors. |8] In the following, we show how to determine
whether there exists an edge (or similarly: port) that
loses all packets. Concretely, we present two different
solutions with a different level of controller involvement
and message complexity.

The first solution executes multiple DFS edge traver-

service

priocast ‘

snapshot

‘ blackhole critical

if pkt.gid € GIDS; then
if pkt.opt_val < p; giq then
pkt.opt val < p; gia
pkt.opt_id < i

First_visit()

push({i,in})

if pkt.repeat = 3 then
pkt.repeat < 2 -
out + A;

if in = pkt.v;.par then
if i = pkt.opt_id then

if in = pkt.v;.par then
pkt.repeat < 3
out <1

else if pkt.repeat = 2 then
FetchAndIne(Ciyp)

Visit_from_cur() out < SELF pht.repeat — 1 -
else out < in
out 1 else if pkt.repeat =1 then
FetchAndInc(Ciy,)
pkt.repeat < 3
if pktw,par = 0
if in < pktw,.cur or and pkt.v;.cur #
S | =yt | BT
Visit_not_from_cur() - pop({z}) pkt.repeat < 1
else out 4= in SendController(crit =
push({i,in}, {out}) true)
pkt.toParent < 0
if pkt.repeat = 3 then
Fetch&Inc(Cout) if pktw;par = 0
if phtvipar — 0 and ;a:lseen if pkt.repeat = 0 :}rll:npk:t.vi.cur =0
Send-nezt_neighbor () pkt]:lrur):PO”then : push({out}) if Fetch&Inc(Cou) =1 pkt.firstPort <
pkt.firstPort < out then out
pkt.v;.cur < out pkt.toParent < 0
SendController()

Send_parent() -

- pkt.toParent < 1

if start =1 then
start < 2
out < pkt.firstPort
pkt.v;.cur < pkt. firstPort
else
Drop

Finish()

SendController(pkt)

SendController ("No SendController(crit =
Blackhole”) false)

Table 1: SmartSouth service functions.

sals, each with a different Time-To-Live (TTL) value.
The goal of these traversals is to find, in a binary-search
fashion, the exact point along the DFS tree where
the packet is lost. The code of the original DFS in
SmartSouth is hardly changed, we only add function-
ality for TTL inspection and increment. Upon each
visit, a node checks whether the TTL value is 0, and if
so, records the edge it was about to forward to (if the
TTL had not been 0); this information is forwarded to
the controller. For each request, the application waits
whether the request returns, and if yes, checks whether
there exists a blackhole farther in the DFS.

As a second approach, we present a more complicated
yvet more effective solution, which only requires two
out-band packets. At the heart of this solution lies a
technique we call smart counters.

Smart Counter. A smart counter implements mul-
tiple (small) counters that are stored in the switch and
support fetch-and-increment operations while processing
different packets. The smart counter can be read and
updated while packets are processed in the OpenFlow
pipeline. The implementation is based on defining a

group with round-robin bucket selection policy (an op-
tional feature of OpenFlow 1.3). The number of buckets
equals the number of counter values, i.e., k buckets are
required for a counter with values {0,...,k — 1}. For
each bucket, we define an action that writes its sequence
(the position of the bucket in the group) to some packet
header field (e.g., a temporary field), allowing it to be
matched and used by the flow tables. This allows to have
increasing bucket ids for a packet applied to the group,
and to fetch nd increase the counter; an overflowing
counter returns to 0.

Probing Links with Smart Counters. To count
the number of messages that traverse a link, our black-
hole algorithm proactively installs one smart counter
per switch port (represented as C,, where x is the port
number). Given such counters, our algorithm uses one
network traversal that goes back and forth once on every
new link (using a special packet field named repeat):
Accordingly, the counter of every non-blackhole link is
increased to a value greater than 1, while the counters
of blackhole links (port) have value one. Subsequently,
our algorithm initiates a second traversal which, upon

detecting the counter-1 link, sends its description to the
controller. The repeat field is also used to differentiate
the packets of the two traversals (repeat = 0 in the
second traversal). The controller sends the two packets
with a time difference of twice the maximum delay, and
then waits for the blackhole report.

Detecting Packet-Loss with Smart Counters.
Our mechanism cannot only be used to handle links that
drop every packet (and more importantly, links that
may drop our in-band blackhole detection packets), but
also to monitor packet loss. The main idea is to use
two (additional) smart counters per port, one counter
for outgoing packets and the other one for incoming
packets. Every time a packet is sent through a port,
the outgoing counter of a link is increased; and anal-
ogously for in-ports when a packet is received. When
our blackhole detection packet traverses the network
it triggers the comparison of outgoing and incoming
counters on opposites sides of the links; if the counters
differ, a packet-loss is reported. Note that counters may
overflow (and be reset to 0), and accordingly, a packet
may be lost (a false negative); as a possible solution, we
suggest to increase and compare a few smart counters,
with unique and prime sizes.

3.4 Critical Nodes

In this case study, we want to determine whether
a given switch v; is critical: Will the removal of v;
lead to a network partition? We implement the data
plane function to realize this application as follows: the
controller asks a node to check its own criticality, by
sending it a special packet. Upon reception of the packet,
the node starts the traversal from port 1 (or, if port
1 is not live, the first consequent working port). This
first port is stored in the packet in the pkt. firstPort
field. If the node is not critical, the packet sent from
pkt. first Port will traverse all the nodes in the network,
before it returns back via this port. Thus, if ¢ is not
critical, then no other node except of the neighbor at
port pkt. firstPort will choose i as the parent in further
traversal process.

Now, in order to be able to verify that i is not se-
lected as a parent for its neighbor, we add a bit field
pkt.toParent in the tag of the packet which will be set
to 1 when a node sends a packet to its parent. So, once
the packet is back from the pkt. first Port port, the node
i advances pkt.v;.cur to the next working port, sends
the packet via this port, and continues the SmartSouth
traversal. From this point on, the node i inspects the
pkt.toParent field of all the incoming packets. Once
it sees a packet with pkt.toParent = 1 it immediately
decides that it is a critical node, and informs the con-
troller. If the SmartSouth traversal is finished and no
additional node selected 7 as the parent, then i informs
the controller that it is not a critical node.

Remark on Complexity. We conclude this sec-
tion with a discussion of the overhead of the different
SmartSouth services. Clearly, the anycast variants do
not require any out-of-band messages, and only a con-
stant number of messages (of constant size) are needed
for the blackhole and critical node services. The com-
plexity of the snapshot is simply given by the size of
the network that needs to be collected; as discussed, the
snapshot may also be split into multiple messages. The
number of in-band messages of SmartSouth is in the
order of the network size as well (| F| links are visited).
Only the messages of snapshot may become large. Note
that all out-of-band messages can be sent in-band to
any server connected to the first node of the traversal,
thereby allowing complete in-band monitoring.

Table [2| summarized the complexities. In general,
using switches like our NoviKit 250 switch (32MB flow
table space and full support for extended match fields)
and if the size of the data section of packets is limited
to 0.5KB, we believe that our algorithms scale up to a
few hundred nodes.

Service Complexity

out-band #msgsxsize | in-band #msgs X size
Snapshot 1xO0(1)+1xO(E]) | (4[E] —2n) x O(|E])
Anycast 0 (4/E| — 2n) x |datal
Priocast 0 (8|E| — 4n) x |datal
Blackhole 1 | 2log|E| x O(1) (8|E| — 4n) x O(1)
Blackhole 2 | 3 x O(1) 4|E| x O(1)
Critical 2x 0(1) (4/E| —2n) x O(1)

Table 2: Overview of the complexities of the dif-
ferent SmartSouth services. The message size
does not include the DFS part, which adds an-
other O(nlogn) bits, where n is the network size.

4. CONCLUSION

We understand our work as a first step, and believe
that our results can nourish the debate on how to par-
tition the functionality between the “dumb data plane”
and the “smart control plane”. While we kept our
case studies simple and “inspirational” on purpose, our
techniques can be extended to implement many other
functions. For example, the smart counter concept in-
troduced in this paper may also be used to infer network
loads. Thus, we believe that our paper opens a rich field
for future research.

Remark. Within the UNIFY projectl] we will in-
vestigate how SmartSouth could provide additional
robustness for monitoring dynamically instantiated ser-
vice chains.

!See http://www.fp7-unify.eu,.

S.
[1]

2]

REFERENCES

http://www.openflowhub.org/display/
floodlightcontroller/TopologyService,
openflowhub.org, 2012.

Y. Afek, A. Bremler-Barr, and L. Schiff.
Cross-entrance consistent range classifier with
openflow. In Proc. Research Track of the Open
Networking Summit (ONS), 2014.

M. Borokhovich, L. Schiff, and S. Schmid. Provable
data plane connectivity with local fast failover:
Introducing openflow graph algorithms. In Proc.
ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN), 2014.
Colin Scott et al. Troubleshooting sdn control
software with minimal causal sequences. In Proc.
ACM SIGCOMM, 2014.

A. R. Curtis, J. C. Mogul, J. Tourrilhes,

P. Yalagandula, P. Sharma, and S. Banerjee.
Devoflow: Scaling flow management for
high-performance networks. In Proc. ACM
SIGCOMM, pages 254265, 2011.

N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres,
and N. McKeown. Where is the debugger for my
software-defined network? In Proc. 1st Workshop
on Hot Topics in Software Defined Networks
(HotSDN), pages 5560, 2012.

S. Hassas Yeganeh and Y. Ganjali. Kandoo: a
framework for efficient and scalable offloading of
control applications. In Proc. 1st Workshop on Hot
Topics in Software Defined Networks (HotSDN),
pages 19-24, 2012.

R. R. Kompella, J. Yates, A. Greenberg, and A. C.
Snoeren. Detection and localization of network
black holes. In Proc. IEEE INFOCOM, 2007.

T. Koponen et al. Onix: A Distributed Control
Platform for Large-scale Production Networks. In
USNIX 0OSDI, 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Liu, A. Panda, A. Singla, B. Godfrey,

M. Schapira, and S. Shenker. Ensuring
connectivity via data plane mechanisms. In Proce.
10th USENIX NSDI, pages 113-126, 2013.

P. Skoldstrom et al. Towards unified
programmability of cloud and carrier
infrastructure. In Proc. European Workshop on
Software Defined Networking (EWSDN), 2014.

P. Pan, G. Swallow, and A. Atlas. Fast reroute
extensions to RSVP-TE for LSP tunnels. In RFC
4090, 2005.

A. Panda, C. Scott, A. Ghodsi, T. Koponen, and
S. Shenker. Cap for networks. Proc. HotSDN, 2013.
Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao,

V. Sekar, and M. Yu. Simple-fying middlebox
policy enforcement using sdn. In Proc. ACM
SIGCOMM, pages 27-38, 2013.

M. Reitblatt, M. Canini, A. Guha, and N. Foster.
Fattire: Declarative fault tolerance for
software-defined networks. In Proc. HotSDN, pages
109-114, 2013.

N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood,
and X. Huang. Leveraging zipf’s law for traffic
offloading. SIGCOMM Comput. Commun. Rev.,
42(1):16-22, Jan. 2012.

S. Schmid and J. Suomela. Exploiting locality in
distributed sdn control. In Proc. SIGCOMM
Workshop on Hot Topics in Software Defined
Networking (HotSDN), 2013.

C.-C. Tu, P.-W. Wang, and T.-c. Chiueh. In-band
control for an ethernet-based software-defined
network. In Proc. SYSTOR, 2014.

S. Zhang, L. Vanbever, and S. Malik. In-Band
Update for Network Routing Policy Migration. In
Proc. IEEE ICNP, 2014.

http://www.openflowhub.org/display/floodlightcontroller/TopologyService
http://www.openflowhub.org/display/floodlightcontroller/TopologyService

	Introduction
	The SmartSouth Mechanism
	Case Studies
	Snapshots
	Anycast
	Blackhole Detection
	Critical Nodes

	Conclusion
	References

