Transport Layer — Part |l

Computer Networks, Winter 2012/2013

Last Session

Company Host
F —_— — _— — — — —_— — _—
Emp.1 Emp.2 Emp.s‘ \

5: App. Layer (processes
% i pp. Layer (pi)

4: Transport Layer (protocols)

3: Network Layer (protocol) SP: 6428
DP: 5775

2: Link Layer (protocols)

1: Physical Layer (medium) SP: 5775
DP: 6428

.
- E—— - O o o

—-— e s o = e

e 32 ity —

source port # dest port #

length (_ooto1110) @ "

1234

Not OK, r I
01101000 01101001 ot OK, repeat please

(h) (i) 1234
- o e

NET)
WOoRks Transport Layer 3-2

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TCP congestion

control

Transport Layer

3-3

Pipelining Protocols

(Go-back-N: big picture:

o Sender can have up to
N unacked packets in
pipeline

o Rcvr only sends
cumulative acks

o Doesn’t ack packet if
there’s a gap

o Sender has timer for
oldest unacked packet

o If timer expires,
retransmit all unacked
packets

NET

Selective Repeat: big pic

o Sender can have up to
N unacked packets in
pipeline

o Rcvr acks individual
packets

o Sender maintains timer
for each unacked
packet

o When timer expires,
retransmit only unack
packet

Transport Layer

3-4

Go-Back-N

Sender:
o k-bit seq # in pkt header
o “window” of up to N, consecutive unack’ed pkts allowed

send_base nexfsegnum dlready Usable. hof
lv i ack’ed yet sent
JHIIRE 0 EIEELO0N0000 | septanproa] motvsce
+ __ window size —4
N

o ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
o may receive duplicate ACKs (see receiver)

o timer for each in-flight pkt

o timeout(n): retransmit pkt n and all higher seq # pkts in window

NET
WORKs Transport Layer 3-5

Applet Demo

o http://media.pearsoncmg.com/aw/aw_Kkurose
network 2/applets/go-back-n/go-back-n.html

o http://media.pearsoncmg.com/aw/aw_Kkurose
network 3/applets/SelectRepeat/SR.html

o (Self Study)

Transport Layer 3-6

N
WORK

Go back n: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpki[nextsegnum])
if (base == nextsegnum)
start_timer
nextseqnum-++
}
A T else
— - refuse_data(data)

.
.
.
.
.
.
.
.
‘e
.

""""" . timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(revpkt) G udt_send(sndpkt[base+1])

&& corrupt(rcvpkt
phirevpid) Q udt_send(sndpkt[nextseqnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1

udt = unreliable data transfer If (base == nextseqnum)

Rdt = reliable... stop_timer
else

T .
N-E start_timer

Transport Layer 3-7

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(rovpkt)
S~ o (> && notcurrupt(rcvpkt)

A T~ - && hassegnum(rcvpkt,expectedsegnum)
= -

expectedsegqnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received pkt with
highest in-order seq #
o may generate duplicate ACKs
o heed only remember expectedseqnum
o out-of-order pki:

o discard (don’t buffer) -> no receiver buffering!
o Re-ACK pkt with highest in-order seq #

WORKs Transport Layer 3-8

GBN in

i send pktO
action

send pktl
send pkt2

send pkt3
(wait)

-

rcv ACKO
send pkt4

rcv ACK]

—pkf2 timeout
send pki2
send pkt3
send pkt4
send pktd

NET
WORKS

sender

receiver

\
\(Is)(ss)

N

send pkt5 \

—
~

rcv pkto
send ACKO

rcv Pkt
send ACK

rcv pkt3, discard
send ACKI

rcv pkitd, discard
send ACKI]

rcv pkid, discard
sencr:j) ACK

rev pkt2, deliver

send ACK2
rcv pkt3, deliver

send ACK3

Transport Layer

3-9

NET

Selective Repeat

o receiver individually acknowledges all correctly
received pkts

o buffers pkts, as needed, for eventual in-order delivery to
upper layer

o sender only resends pkts for which ACK not
received
o sender timer for each unACKed pkt

o sender window
o N consecutive seq #'s
o again limits seq #s of sent, unACKed pkts

Transport Layer

3-10

Selective repeat: sender, receiver windows

send_base nextsegnum dlready I usable, not

ack’'ed yet sent

I |] s

NET
WORKS

g window size —24
N

(a) sender view of sequence numlbers

acceptable
(buffered) but § «\yithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIWII |oactes ot || rorescet

A vindow size—24

1 N

rcv_base

out of order I

(b) receiver view of sequence numbers

Transport Layer 3-11

Selective repeat

___sender

data from above :

o if next available seq # in
window, send pkt

timeout(n):
o resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

o mark pkt n as received

o if n smallest unACKed pkt,
advance window base to
next unACKed seq #

NET

__receiver

pkt n in [rcvbase, rcvbase+N-1]
o send ACK(n)
o out-of-order: buffer

o in-order: deliver (also deliver

buffered, in-order pkis),

advance window to next not-

yet-received pkt
pkt n in [rcvbase-N,rcvbase-1]
o ACK(n)
otherwise:
o ignore

Transport Layer

3-12

Selective repeat in action

NET

pktl =ent

pktl =ent
012 3/456 7849

pkt? =ent

pkt3 =ent. window full

012 3456 789

ACKD rovd, pktd =ent
0L 2 3 4|56 7 89

ACKEl rowd, pkt5 =e=nt
o 1({2 34 5(e 7 89

—— pkt2 TIMEOUT, pkt? reszent
o1l(2 24 5le 7 89

ACK3 rowd, nothing =sent
o 1({z 345 7 829

— |01 2 3456 789 W

(loss)

o1

2 3 4|5

01234567879 ﬂq_hkﬂﬂq__h%ﬁﬁ__‘““"pktD rovd, delivered., ACKD =ent

B 7 8 9

pktl rovd, delivered. ACEl =ent

01

2 345

£ 7819

pktd rovd, uffered. ACKI =ent

01

2 345

B 7 89

pktd rocvd, uffered. ACK4 =ent

n1

2345

plkth

B 7 89

rowd, buf fered. ACKS =ent

n1

2345

B 7 89

pkt? rowd, phkt?. pktd, pltd pleth
delivered. ACK?Z? =ent

012345k

B 7 893

Transport Layer

3-13

NET
WORKS

Selective repeat:
dilemma

Example:

o seq#s:0,1,2,3

o window size=3

o receiver sees no
difference in two
scenarios!

o Incorrectly passes

duplicate data as new in

(@)

Notice: Window size should

be not too large, e.g. V2 of

sequence range.

sender window
(after receipt)

receiver window
(after receipt)

ktO
01230149

Ojl1 2 301 2

012301 0123012

0123012

01230 1}2

ACK2
timeout
retransmit pktQ
012301 fkto —pp receive packet

with seq number O

(a)

sender window
(after receipt)

ktO
01230149

receiver window
(after receipt)

Ol 2 3Jj0 1 2

CKO

0121301 0112 30]1 2
CK1

012|301 2 0123012
ACK2

ol1 2 301

0112301

receive packet
with seq number O

()

Transport Layer 3-14

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TCP congestion

control

Transport Layer

3-15

TCP: Overview recs: 793, 1122, 1323, 2018,

2581
o point-to-point: o full duplex data:
o one sender, one receiver o bi-directional data flow in
o reliable, in-order byte same connection
stream: o MSS: maximum segment

size
o connection-oriented:

o handshaking (exchange
of control msgs) init’s
sender, receiver state

o send & receive buffers before data exchange

o flow controlled:

s o sender will not overwhelm
et receiver

o No “message boundaries”
o pipelined:

o TCP congestion and flow
control set window size

socket
door —

send buffer receive buffer

) [Segment] —» ()

NET
WOoRks Transport Layer 3-16

TCP segment structure

URG: urgent data
(generally not used)\

A

32 bits >

source port # dest port #

counting

ACK: ACK #

by bytes
of data

. sequence number

valid

(not segments!)

PSH: push data now
(generally not used)— |

—acknqwledgement number
head ”gted A ;F3|§§IF Receive window
Wm/ Urg data pnter

i

bytes
rcvr willing

RST, SYN, FIN:—

to accept

_—
Op’@ré (variable length)

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

NET

Transport Layer 3-17

TCP seq. #'s and ACKs

Seq. #'s:

o byte stream
“number” of first
byte in segment’s
data

ACKs:

o seq # of next byte
expected from other
side

o cumulative ACK

Q: how receiver handles
out-of-order segments

o A: TCP spec doesn'’t
say, - up to
implementor

NET

User Seqs4p ACKes
types W‘
C host ACKs
0='C ‘res:elpt of
8C _43,02 C’, echoes
gea= 12 back ‘C’
host ACKs
receipt Seq=43
, ACK=
of echoed Ck=g0
‘C!
time
simple telnet scenario
Transport Layer 3-18

NET

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

o longerthan RTT
o but RTT varies

o too short: premature
timeout

o unnecessary
retransmissions

o too long: slow reaction to
segment loss

Q: how to estimate RTT?

o SampleRTT: measured time from
segment transmission until ACK
receipt

o Ignore retransmissions

o SampleRTT will vary, want

estimated RTT “smoother”
o average several recent

measurements, not just current
SampleRTT

Transport Layer 3-19

NET

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT
0 Exponential weighted moving average

3 influence of past sample decreases exponentially fast
7 typical value: oo = 0.125

Transport Layer

3-20

NET

Example RTT estimation:

350

300

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

[\®]

()]

o
I

RTT (milliseconds)

200 ~

150

100

43 50 57 64 71

time (seconnds)

—o— SampleRTT —&— Estimated RTT

78

85

92

99 106

Transport Layer

3-21

TCP Round Trip Time and Timeout

Setting the timeout

o EstimatedRTT plus “safety margin”
o large variation in EstimatedRTT -> larger safety margin

o first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]|

(typically, B = 0.25)
Then set timeout interval:

Timeoutinterval = EstimatedRTT + 4*DevRTT

NET
WOR ks Transport Layer

3-22

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TCP congestion

control

Transport Layer

3-23

NET

TCP reliable data transfer

o TCP creates rdt service
on top of IP’s unreliable
service

o Pipelined segments
o Cumulative acks

o TCP uses single
retransmission timer

o Retransmissions are
triggered by:
o timeout events
o duplicate acks

o Initially consider
simplified TCP sender:

o Ignore duplicate acks

o Ignore flow control,
congestion control

Transport Layer

3-24

NET

TCP sender events:

data rcvd from app: timeout:

o Create segment with o retransmit segment that
seq # caused timeout

o Seq # Is byte-stream o restart timer
number of first data Ack revd:

byte in segment o If acknowledges

o start timer if not already previously unacked
running (think of timer segments
as for oldest unacked o update what is known to
segment) be acked

o expiration interval: o start timer if there are
TimeOutInterval outstanding segments

Transport Layer

==

ET

NextSegNum = InitialSegNum
SendBase = InitialSeqgNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

« SendBase-1: last
cumulatively
ack’ed byte
Example:

« SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-26

TCP: retransmission scenarios

Seq=

[92 g bytes data I_

3

£

5 2A00 =

: / =

£ X i

l loss 3

Seq=g :
2, 8 byteg dats ?irz)%base T_

SendBase §

=120 £
(o3

(D)

SendBase n
- 100 Se1n20(I)Base 1

Y .Y timg -
time lost ACK scenario premature timeout
¥
o Transport Layer 3-27

NET
WORKS

TCP retransmission scenarios (more)

SendBase
=120

timeout ———
)
@
fo]
A
N
oo
o
Py
@
(7]
g
1)

v

time

Cumulative ACK scenario

v

Transport Layer

3-28

TCP ACK generation [rrc 1122, RFc 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-29

Fast Retransmit

o Time-out period often
relatively long:
o long delay before
resending lost packet
o Detect lost segments
via duplicate ACKs.

o Sender often sends
many segments back-to-
back

o If segment is lost, there
will likely be many
duplicate ACKs.

NET

o If sender receives 3
ACKs for the same data,
it supposes that segment
after ACKed data was
lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer

3-30

NET
WORKS

timeout

feseng 2na
S€9gmen
_ t

v

time

Figure 3.37 Resending a segment after triple duplicate ACK
Transport Layer 3-31

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

i \

a duplicate ACK for fast retransmit
already ACKed segment

NET
WORKS

Transport Layer

3-32

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TCP congestion

control

Transport Layer

3-33

Analogy: Flow Control

o Assumptions:

o Secretary delivers mail at
rate of 4 letters/h

o Employee Bill processes
mail at 1 letter/h.

o Table has place for 10
letters, more will drop on
floor.

o After half a day his table
overflows, letters get lost.

o Sender needs to decrease

sending rate.

NET

time Mail read | Mail on
table
9:00 0 4
10:00 1 7
11:00 2 10
12:00 3 13!

Bill

&

Transport Layer

3-34

TCP Flow Control

o receive side of TCP
connection has a
receive buffer:

k— RevWindow —f

7/
///

data from
IP

7
////
'|l— RevBuffer —I‘*

o app process may be

slow at reading from
buffer

NET
WORKS

application
process

-flow control
sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

o Speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

Transport Layer 3-35

TCP Flow control: how it works

k— RevWindow —f

7777 o Rcvr advertises spare
/ 7 __appucaﬁm room by including value

data from

¥ e of ReviWindow in
Z / 7 / segments
pe o Sender limits unACKed
(Suppose TGP receiver data to RevWindow
discards out-of-order o guarantees receive buffer
segments) doesn’t overflow
o Spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

ET
WoR 1Y Transport Layer 3-36

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TCP congestion

control

Transport Layer

3-37

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:

establish “connection” before |
exchanging data segments Step 1: client host sends TCP

o initialize TCP variables: SYN segment to server
o Seq.#s o specifies initial seq #
- buffers, flow control info o Nno data
(€.9. RevWindow) Step 2: server host receives SYN,
o client: connection initiator replies with SYNACK segment

Socket clientSocket = new

Socket ("hostname", "port o server allocates buffers

o specifies server initial seq. #

o server: contacted by client Step 3: client receives SYNACK,
Socket connectionSocket = replles with ACK Segment,

welcomeSocket .accept () ; which may contain data

number") ;

NET
WOR ks Transport Layer 3-38

TCP Connection Management (cont.)

server@

Closing a connection:

client closes socket: FIN
clientSocket.close();

Step 1: client end system

close
sends TCP FIN control pCK
segment to server _ W
Step 2: server receives FIN, § ACK
replies with ACK. Closes 3
connection, sends FIN. _g

closed —

NET
WOR ks Transport Layer 3-39

TCP Connection Management (cont.)

server@

Step 3: client receives FIN,
replies with ACK.

closing
))) FIN
o Enters “timed wait” - will

respond with ACK to

received FINs .
closing

Step 4: server, receives ACK.
Connection closed.

ACK
Note: with small modification,

can handle simultaneous
FINSs.

closed

timed wait

closed —

NET
WORKs Transport Layer 3-40

TCP Connection Management (cont)

wiait 30 seconds

CLOSED

TIME_WAIT

F Y

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nathing

TCP client
lifecycle

NET

client application

initiates a TCP connection

send SYM

SYN_SENT

¥

receive 3TN & ACK
zend ACK

ESTABLISHED

FIN_WAIT_1

client application
initiates close ¢connection

send FIM

receive ACK
send nothing

CLOSED

LAST_ACK

&

send FIM

CLOSE_WAIT

receive FIN
send ACK

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYM
send SYMN & ACK

¥

SYN_RCVD

ESTABLISHED

receive ACK
send nothing

Transport Layer

3-41

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TCP congestion

control

Transport Layer

3-42

Principles of Congestion Control

Congestion:

o Informally: “too many sources sending too much data
too fast for network to handle”

o different from flow control! (overflow at receiver v.s.
overflow on path routers)

o Mmanifestations:
o lost packets (buffer overflow at routers)
o long delays (queueing in router buffers)
o a top-10 problem!

Transport Layer 3-43

Causes/costs of congestion: scenario 1

Host A

o two senders, two

receivers

o one router, infinite
buffers

o NO retransmission

Host B

C/2+1

A’ou’r
delay

Kin . original data

unlimited shared
output link buffers

-

o large delays
when congested

o maximum
achievable

Ci/g throughput

Transport Layer 3-44

Causes/costs of congestion: scenario 2

o one router, finite buffers
o sender retransmission of lost packet

Host

A

Ai, - original

data

A, : original data, plus
retransmitted data

finite shared output
link, buffers

NET)

out

Transport Layer

3-45

Causes/costs of congestion: scenario 2

o always: 7\, 7\, (goodput)

o “perfect” retransm|SS|on only when loss: 7Ln> }\“o i

o retransmission of delayed (not lost) packet makes }Li,n larger (than
perfect case) for same xout

R2----------"-"""----- -] R2 t----------""-"-"-"-"--------- : R/2
R/3 f-m-mmmmmmmmmmm o !
&8 (<8 &8 R/41~="""="""""""""mm 2
, R/2 , R/2 , R/2
}“in 7"in }“in
a. b. C.

“costs” of congestion:
3 more work (retrans) for given “goodput”
7 unneeded retransmissions: link carries multiple copies of pkt

WORKs Transport Layer 3-46

Causes/costs of congestion: scenario 3

o four senders Q: what happens as A.

:) in
o multihop paths and A increase ?
o timeout/retransmit In

Host A A, - original data A

out

A, - original data, plus
retransmitted data

finite shared output
link buffers

Host B

JIIIIII

NET
WORks Transport Layer 3-47

NET
WORKS

Causes/costs of congestion: scenario 3

C/2 i

3 ot
(< i

k!
Ig
Another “cost” of congestion:

3 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-48

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

o no explicit feedback from o routers provide feedback to
network end systems

o congestion inferred from o single bit indicating
end-system observed loss, congestion (SNA,
delay DECDbit, TCP/IP ECN,

o approach taken by TCP ATM)

o explicit rate sender
should send at

NET
WORKy Transport Layer

3-49

Case study: ATM ABR congestion control

ABR: available bit rate:
o “elastic service”

o Iif sender’s path
“underloaded”:

o sender should use
available bandwidth

o Iif sender’s path congested:

o sender throttled to
minimum guaranteed
rate

NET

RM (resource management)
cells:

o sent by sender, interspersed

with data cells

o bits in RM cell set by switches

(“network-assisted”)

o NI bit: no increase in rate
(mild congestion)

o Cl bit: congestion indication

o RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-50

Case study: ATM ABR congestion control

I RM cells
source |:| data cells destination

Switch Switch

P T e

o two-byte ER (explicit rate) field in RM cell

o congested switch may lower ER value in cell

o sender’ send rate thus maximum supportable rate on path
o EFCI bit in data cells: set to 1 in congested switch

o if data cell preceding RM cell has EFCI set, sender sets ClI bit
in returned RM cell

NET
WOR ks Transport Layer

3-51

NET

Chapter 4 outline

O

O

O

O

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented

transport: TCP

o Segment structure
o reliable data transfer

o flow control

o connection management

o 3.6 Principles of
congestion control

o 3.7 TGP congestion

control

Transport Layer

3-52

TCP congestion control: additive increase,
multiplicative decrease

3 Approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS
every RTT until loss detected

O multiplicative decrease: cut CongWin in half after loss

8 Kbytes —

(<))
N
w PN
; 24 Kbytes —
3
Saw tooth =
. . 16 Kbytes —
behavior: probing = e
for bandwidth 2
O
(@)]
C
o
(@)

time

NET
WOR ks Transport Layer 3-53

TCP Congestion Control: details

o sender limits transmission: How does sender
LastByteSent-LastByteAcked perceive congestion?
< CongWin o loss event = timeout or
o Roughly, 3 duplicate acks
e CongWin o TCP sender reduces
B RTT Dytes/sec rate (CongWin) after

> CongWin is dynamic, function of ~ 10SS event

perceived network congestion ~ three mechanisms:
> AIMD

o Slow start

o conservative after
timeout events

¥
\?Iv; RKS Transport Layer 3-54

TCP Slow Start

o When connection begins,
CongWin =1 MSS

o Example: MSS = 500 bytes
& RTT = 1000 msec (1sec)

o Initial rate = 500 bytes/s

o avallable bandwidth may
be >> MSS/RTT

o desirable to quickly ramp
up to respectable rate

NET

3 When connection begins,
iIncrease rate
exponentially fast until
first loss event

Transport Layer

3-55

TCP Slow Start (more)

o When connection
begins, increase rate
exponentially until first
loss event:

o double CongWin every
RTT

o done by incrementing
CongWin for every ACK

received
o Summary: initial rate is
slow but ramps up
exponentially fast

NET

time

|

Transport Layer

3-56

Refinement: inferring loss

o After 3 dup ACKs:

o CongWin is cut in half __ Philosophy:

o window then grows
linearly 3 3 dup ACKs indicates

network capable of

o But after timeout event: e
delivering some segments

o CongWin Instead set to 0 timeout indicates a

1 MSS; “more alarming”

o window then grows congestion scenario
exponentially

o to a threshold, then
grows linearly

NE T
WOR ks Transport Layer 3-57

NET

Refinement

Q: When should the

value before
timeout.

exponential

increase switch to 49

linear? _—
A: When CongWin S 12_

gets to 1/2 of its e

TCP Series 2 Reno

Threshold

Threshold

TCP Series 1 Tahoe

Implementation:

o Variable Threshold

o Atloss event, Threshold is
set to 1/2 of CongWin just
before loss event

01 2 3 4 5 6 7 8

r 1 T 1 1 T T T T 1T T 1T 1T T 1
9 10 11 12 13 14 15§
Transmission round

Transport Layer

3-58

NET

Summary: TCP Congestion Control

o When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

o When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

o When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set {0 Threshold.

o When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

Transport Layer 3-59

TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SS or CA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SS or CA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

NET

Transport Layer

3-60

N

TCP throughput

o What’s the average throughout of TCP as a
function of window size and RTT?

o Ignore slow start
o Let W be the window size when loss occurs.
o When window is W, throughput is W/RTT

o Just after loss, window drops to W/2,
throughput to W/2RTT.

o Average throughout: .75 W/RTT

Transport Layer 3-61

Chapter 4: summary

o principles behind transport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer
o flow control
o congestion control

o instantiation and
implementation in the
Internet

o UDP
o TGP

NET

Next:

o Networked
Multmedia

Transport Layer

3-62

Thank you

Any questions?

