
Transport Layer – Part II

Computer Networks, Winter 2012/2013

Last Session

Transport Layer 3-2

Emp.1 Emp.2 Emp.3

Secretary

Post man

Driver

1: Physical Layer (medium)

2: Link Layer (protocols)

3: Network Layer (protocol)

4: Transport Layer (protocols)

5: App. Layer (processes)

Company Host

Road

P1P1P2

SP: 6428

DP: 5775

SP: 5775

DP: 6428

source port # dest port #

32 bits

01101000 01101001

(h) (i)

length 00101110

You Friend

0176

OK

1234

Not OK, repeat please

1234

OK

3.0 …

……

21

543

3-3

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer

Transport Layer 3-4

Pipelining Protocols

Go-back-N: big picture:

o Sender can have up to
N unacked packets in
pipeline

o Rcvr only sends
cumulative acks
o Doesn’t ack packet if

there’s a gap

o Sender has timer for
oldest unacked packet
o If timer expires,

retransmit all unacked
packets

Selective Repeat: big pic

o Sender can have up to
N unacked packets in
pipeline

o Rcvr acks individual
packets

o Sender maintains timer
for each unacked
packet
o When timer expires,

retransmit only unack
packet

3-5

Go-Back-N

Sender:

o k-bit seq # in pkt header

o “window” of up to N, consecutive unack’ed pkts allowed

o ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

o may receive duplicate ACKs (see receiver)

o timer for each in-flight pkt

o timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer

Applet Demo

o http://media.pearsoncmg.com/aw/aw_kurose_

network_2/applets/go-back-n/go-back-n.html

o http://media.pearsoncmg.com/aw/aw_kurose_

network_3/applets/SelectRepeat/SR.html

o (Self Study)

Transport Layer 3-6

3-7

Go back n: sender extended FSM

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

Transport Layer

udt = unreliable data transfer
Rdt = reliable…

3-8

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with

highest in-order seq #

o may generate duplicate ACKs

o need only remember expectedseqnum

o out-of-order pkt:

o discard (don’t buffer) -> no receiver buffering!

o Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

Λ

Transport Layer

3-9

GBN in
action

Transport Layer

3-10

Selective Repeat

o receiver individually acknowledges all correctly

received pkts

o buffers pkts, as needed, for eventual in-order delivery to
upper layer

o sender only resends pkts for which ACK not

received

o sender timer for each unACKed pkt

o sender window

o N consecutive seq #’s

o again limits seq #s of sent, unACKed pkts

Transport Layer

3-11

Selective repeat: sender, receiver windows

Transport Layer

3-12

Selective repeat

data from above :

o if next available seq # in
window, send pkt

timeout(n):

o resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

o mark pkt n as received

o if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender

pkt n in [rcvbase, rcvbase+N-1]

o send ACK(n)

o out-of-order: buffer

o in-order: deliver (also deliver
buffered, in-order pkts),
advance window to next not-
yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

o ACK(n)

otherwise:

o ignore

receiver

Transport Layer

3-13

Selective repeat in action

Transport Layer

3-14

Selective repeat:
dilemma

Example:

o seq #’s: 0, 1, 2, 3

o window size=3

o receiver sees no
difference in two
scenarios!

o incorrectly passes
duplicate data as new in
(a)

Notice: Window size should
be not too large, e.g. ½ of
sequence range.

Transport Layer

Transport Layer 3-15

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer 3-16

TCP: Overview RFCs: 793, 1122, 1323, 2018,

2581

o full duplex data:

o bi-directional data flow in
same connection

o MSS: maximum segment
size

o connection-oriented:

o handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

o flow controlled:

o sender will not overwhelm
receiver

o point-to-point:

o one sender, one receiver

o reliable, in-order byte

stream:

o no “message boundaries”

o pipelined:

o TCP congestion and flow
control set window size

o send & receive buffers

socket

door
TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-17

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum
FSRPAU

head
len

not
used

Options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-18

TCP seq. #’s and ACKs
Seq. #’s:

o byte stream
“number” of first
byte in segment’s
data

ACKs:

o seq # of next byte
expected from other
side

o cumulative ACK

Q: how receiver handles
out-of-order segments

o A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

User

types

‘C’

host ACKs

receipt

of echoed

‘C’

host ACKs

receipt of

‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-19

TCP Round Trip Time and Timeout

Q: how to set TCP

timeout value?

o longer than RTT

o but RTT varies

o too short: premature
timeout

o unnecessary
retransmissions

o too long: slow reaction to
segment loss

Q: how to estimate RTT?
o SampleRTT: measured time from

segment transmission until ACK
receipt

o ignore retransmissions

o SampleRTT will vary, want

estimated RTT “smoother”

o average several recent
measurements, not just current
SampleRTT

Transport Layer 3-20

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

r Exponential weighted moving average

r influence of past sample decreases exponentially fast

r typical value: αααα = 0.125

Transport Layer 3-21

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

lis
ec

o
n

d
s)

SampleRTT Estimated RTT

Transport Layer 3-22

TCP Round Trip Time and Timeout

Setting the timeout

o EstimatedRTT plus “safety margin”

o large variation in EstimatedRTT -> larger safety margin

o first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +
ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

Transport Layer 3-23

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer 3-24

TCP reliable data transfer

o TCP creates rdt service

on top of IP’s unreliable

service

o Pipelined segments

o Cumulative acks

o TCP uses single

retransmission timer

o Retransmissions are

triggered by:

o timeout events

o duplicate acks

o Initially consider

simplified TCP sender:

o ignore duplicate acks

o ignore flow control,
congestion control

Transport Layer 3-25

TCP sender events:

data rcvd from app:

o Create segment with

seq #

o seq # is byte-stream

number of first data

byte in segment

o start timer if not already

running (think of timer

as for oldest unacked

segment)

o expiration interval:
TimeOutInterval

timeout:

o retransmit segment that

caused timeout

o restart timer

Ack rcvd:

o If acknowledges

previously unacked

segments

o update what is known to
be acked

o start timer if there are
outstanding segments

Transport Layer 3-26

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

loop (forever) {

switch(event)

event: data received from application above

create TCP segment with sequence number NextSeqNum

if (timer currently not running)

start timer

pass segment to IP

NextSeqNum = NextSeqNum + length(data)

event: timer timeout

retransmit not-yet-acknowledged segment with

smallest sequence number

start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

} /* end of loop forever */

Comment:

• SendBase-1: last

cumulatively

ack’ed byte

Example:

• SendBase-1 = 71;

y= 73, so the rcvr

wants 73+ ;

y > SendBase, so

that new data is

acked

Transport Layer 3-27

TCP: retransmission scenarios

Host A

time premature timeout

Host B

S
e
q
=

9
2
 t
im

e
o
u
t

Host A

loss

ti
m

e
o
u
t

lost ACK scenario

Host B

X

time

S
e
q
=

9
2
 t
im

e
o
u
t

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer 3-28

TCP retransmission scenarios (more)

Host A

loss

ti
m

e
o
u
t

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Transport Layer 3-29

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-30

Fast Retransmit

o Time-out period often

relatively long:

o long delay before
resending lost packet

o Detect lost segments

via duplicate ACKs.

o Sender often sends
many segments back-to-
back

o If segment is lost, there
will likely be many
duplicate ACKs.

o If sender receives 3

ACKs for the same data,

it supposes that segment

after ACKed data was

lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer 3-31

Host A

ti
m

e
o
u
t

Host B

time

X

Figure 3.37 Resending a segment after triple duplicate ACK

Transport Layer 3-32

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

else {

increment count of dup ACKs received for y

if (count of dup ACKs received for y = 3) {

resend segment with sequence number y

}

Fast retransmit algorithm:

a duplicate ACK for

already ACKed segment
fast retransmit

Transport Layer 3-33

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Analogy: Flow Control

o Assumptions:
o Secretary delivers mail at

rate of 4 letters/h

o Employee Bill processes

mail at 1 letter/h.

o Table has place for 10

letters, more will drop on

floor.

o After half a day his table

overflows, letters get lost.

o Sender needs to decrease

sending rate.

time Mail read Mail on
table

9:00 0 4

10:00 1 7

11:00 2 10

12:00 3 13 !

Transport Layer 3-34

Bill

Transport Layer 3-35

TCP Flow Control

o receive side of TCP

connection has a

receive buffer:

o speed-matching

service: matching the

send rate to the

receiving app’s drain

rate
o app process may be

slow at reading from

buffer

sender won’t overflow
receiver’s buffer by
transmitting too much,
too fast

flow control

Transport Layer 3-36

TCP Flow control: how it works

(Suppose TCP receiver

discards out-of-order

segments)

o spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

o Rcvr advertises spare

room by including value
of RcvWindow in

segments

o Sender limits unACKed
data to RcvWindow

o guarantees receive buffer
doesn’t overflow

Transport Layer 3-37

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer 3-38

TCP Connection Management

Recall: TCP sender, receiver

establish “connection” before
exchanging data segments

o initialize TCP variables:

o seq. #s

o buffers, flow control info
(e.g. RcvWindow)

o client: connection initiator
Socket clientSocket = new

Socket("hostname","port

number");

o server: contacted by client
Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP

SYN segment to server

o specifies initial seq #

o no data

Step 2: server host receives SYN,

replies with SYNACK segment

o server allocates buffers

o specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-39

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system

sends TCP FIN control

segment to server

Step 2: server receives FIN,

replies with ACK. Closes
connection, sends FIN.

client server

close

close

closed

ti
m

e
d
 w

a
it

Transport Layer 3-40

TCP Connection Management (cont.)

Step 3: client receives FIN,

replies with ACK.

o Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.

Connection closed.

Note: with small modification,

can handle simultaneous
FINs.

client server

closing

closing

closed

ti
m

e
d
 w

a
it

closed

Transport Layer 3-41

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer 3-42

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer 3-43

Principles of Congestion Control

Congestion:

o informally: “too many sources sending too much data

too fast for network to handle”

o different from flow control! (overflow at receiver v.s.

overflow on path routers)

o manifestations:

o lost packets (buffer overflow at routers)

o long delays (queueing in router buffers)

o a top-10 problem!

Transport Layer 3-44

Causes/costs of congestion: scenario 1

o two senders, two

receivers

o one router, infinite

buffers

o no retransmission

o large delays

when congested

o maximum

achievable

throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Transport Layer 3-45

Causes/costs of congestion: scenario 2

o one router, finite buffers

o sender retransmission of lost packet

finite shared output
link buffers

Host
A

λin : original
data

Host B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-46

Causes/costs of congestion: scenario 2

o always: (goodput)

o “perfect” retransmission only when loss:

o retransmission of delayed (not lost) packet makes larger (than

perfect case) for same

λ
in

λ
out

=

λ
in

λ
out

>

λ
inλ

out

“costs” of congestion:

r more work (retrans) for given “goodput”

r unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
λin

λ
o
u
t

b.

R/2

R/2
λin

λ
o
u
t

a.

R/2

R/2
λin

λ
o
u
t

c.

R/4

R/3

Transport Layer 3-47

Causes/costs of congestion: scenario 3

o four senders

o multihop paths

o timeout/retransmit

λ
in

Q: what happens as

and increase ?λ
in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-48

Causes/costs of congestion: scenario 3

Another “cost” of congestion:

r when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H

o

s

t
A

H

o

s

t
B

λ
o
u

t

Transport Layer 3-49

Approaches towards congestion control

End-end congestion

control:

o no explicit feedback from
network

o congestion inferred from
end-system observed loss,
delay

o approach taken by TCP

Network-assisted

congestion control:

o routers provide feedback to
end systems

o single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

o explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 3-50

Case study: ATM ABR congestion control

ABR: available bit rate:

o “elastic service”

o if sender’s path
“underloaded”:

o sender should use
available bandwidth

o if sender’s path congested:

o sender throttled to
minimum guaranteed
rate

RM (resource management)

cells:

o sent by sender, interspersed
with data cells

o bits in RM cell set by switches
(“network-assisted”)

o NI bit: no increase in rate
(mild congestion)

o CI bit: congestion indication

o RM cells returned to sender by
receiver, with bits intact

Transport Layer 3-51

Case study: ATM ABR congestion control

o two-byte ER (explicit rate) field in RM cell

o congested switch may lower ER value in cell

o sender’ send rate thus maximum supportable rate on path

o EFCI bit in data cells: set to 1 in congested switch

o if data cell preceding RM cell has EFCI set, sender sets CI bit
in returned RM cell

Transport Layer 3-52

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer 3-53

TCP congestion control: additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

r Approach: increase transmission rate (window size),

probing for usable bandwidth, until loss occurs

m additive increase: increase CongWin by 1 MSS

every RTT until loss detected

m multiplicative decrease: cut CongWin in half after loss

timec
o
n
g
e
s
ti
o
n
 w

in
d
o

w
 s

iz
e

Saw tooth
behavior: probing
for bandwidth

Transport Layer 3-54

TCP Congestion Control: details

o sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

o Roughly,

o CongWin is dynamic, function of

perceived network congestion

How does sender

perceive congestion?

o loss event = timeout or

3 duplicate acks

o TCP sender reduces
rate (CongWin) after

loss event

three mechanisms:

o AIMD

o slow start

o conservative after
timeout events

rate =
CongWin

RTT
Bytes/sec

Transport Layer 3-55

TCP Slow Start

o When connection begins,
CongWin = 1 MSS

o Example: MSS = 500 bytes
& RTT = 1000 msec (1sec)

o initial rate = 500 bytes/s

o available bandwidth may

be >> MSS/RTT

o desirable to quickly ramp
up to respectable rate

r When connection begins,

increase rate

exponentially fast until

first loss event

Transport Layer 3-56

TCP Slow Start (more)

o When connection

begins, increase rate

exponentially until first

loss event:
o double CongWin every

RTT

o done by incrementing
CongWin for every ACK

received

o Summary: initial rate is

slow but ramps up

exponentially fast

Host A

R
T
T

Host B

time

Transport Layer 3-57

Refinement: inferring loss

o After 3 dup ACKs:

o CongWin is cut in half

o window then grows

linearly

o But after timeout event:

o CongWin instead set to

1 MSS;

o window then grows

exponentially

o to a threshold, then

grows linearly

� 3 dup ACKs indicates

network capable of

delivering some segments

� timeout indicates a

“more alarming”

congestion scenario

Philosophy:

Transport Layer 3-58

Refinement

Q: When should the
exponential
increase switch to
linear?

A: When CongWin

gets to 1/2 of its
value before
timeout.

Implementation:

o Variable Threshold

o At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

Transport Layer 3-59

Summary: TCP Congestion Control

o When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially.

o When CongWin is above Threshold, sender is in

congestion-avoidance phase, window grows linearly.

o When a triple duplicate ACK occurs, Threshold set

to CongWin/2 and CongWin set to Threshold.

o When timeout occurs, Threshold set to CongWin/2

and CongWin is set to 1 MSS.

Transport Layer 3-60

TCP sender congestion control

State Event TCP Sender Action Commentary

Slow Start
(SS)

ACK receipt
for previously
unacked
data

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked
data

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

SS or CA Loss event
detected by
triple
duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate
ACK

Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

Transport Layer 3-61

TCP throughput

o What’s the average throughout of TCP as a

function of window size and RTT?

o Ignore slow start

o Let W be the window size when loss occurs.

o When window is W, throughput is W/RTT

o Just after loss, window drops to W/2,

throughput to W/2RTT.

o Average throughout: .75 W/RTT

Transport Layer 3-62

Chapter 4: Summary

o principles behind transport

layer services:

o multiplexing,

demultiplexing

o reliable data transfer

o flow control

o congestion control

o instantiation and

implementation in the

Internet

o UDP

o TCP

Next:

o Networked

Multmedia

Thank you

Any questions?

