
Cloud Computing –

Part 2 of 3
Advanced Computer Networks

Summer Semester 2014

Cloud Computing Overview

o Last week:

o Introduction

o Basic principles and characteristics

• Virtualization, Load Balancing, …

o Last week & today:

o Main standards

• E.g., SDN, OpenFlow, MapReduce, Hadoop, …

o Next week:

o Advances in research

Cloud Computing Overview

o 22/5 lecture:

o Shortened to ~45 minutes

o Afterwards: A guest talk by Ruediger Geib from

Deutsche Telekom

What’s in the Cloud Ecosystem?

o Data sharing
o File systems like Google File System (GFS), Hadoop

File System (HDFS), …

o Data analysis & programming abstractions
o MapReduce, PIG, Hive, Spark, …

o Multiplexing of resources & coordination
o Mesos

o (DataBases
o Cassandra (No-SQL without single point of failure))

Google Cloud Infrastructure

o Google File System (GFS) [1], 2003
o Distributed File System for entire

cluster

o Single namespace

o Google MapReduce (MR) [7], 2004
o Runs queries/jobs on data

o Manages work distribution & fault-
tolerance

o Colocated with file system

o Apache open source versions Hadoop DFS and Hadoop
MR

GFS/HDFS overview

o Petabyte storage
o Large files (multi GB) containing many application

objects (e.g., web documents)
• Reason: unwieldy to manage millions/billions of KB sized files

o Files split into large blocks (128 MB) and replicated
across several nodes

o Big blocks allow high throughput sequential reads/writes

o Data striped on hundreds/thousands of servers
o Scan 100 TB on 1 node @ 50 MB/s = 24 days

o Scan on 1000-node cluster = 35 minutes

GFS/HDFS overview (2)

o Failures will be the norm

o Mean time between failures for 1 node = 3 years

o Mean time between failures for 1000 nodes = 1 day

o Use commodity hardware

o Failures are the norm anyway, buy cheaper hardware

o No complicated consistency models

o Single writer, append-only data

GFS/HDFS overview (3)

o Most files are modified by append rather than

overwrite

o Random writes are basically non-existent within a

file

o Files are very often read sequentially

o E.g., MapReduce

o As a result: Focus on optimization of appending

rather than caching at client

Hadoop in detail

o Multiple components arranged in a cluster

o Master node, backup node, client nodes

o Each of these runs file system and MapReduce

elements

o Master node: NameNode and JobTracker

o Backup node: Secondary NameNode

o Client nodes: DataNode and Tasktracker

Hadoop in detail – NameNode

o Run by master node: keeps directory tree of all
files in the distributed file system (DFS)
o There is one single master node in the DFS

o Tracks where the data is stored
o Doesn’t store data itself!

o Client nodes can ask for location of data

o Client nodes have to ask if they want to
copy/modify/delete/add a file

Hadoop in detail – Secondary

Name Node

o NameNode: single point of failure

o Secondary NameNode creates checkpoints of

NameNode

o Backup in case of failure of NameNode

Hadoop in detail – DataNode

o Stores the actual data in HDFS

o Data is replicated among multiple DataNodes
o Typically: three

o Provides an interface for communication with
NameNode and client applications (directly!)

o Any new DataNode is allowed to join the cluster at
any time
o Can get storage ID from NameNode

o Elasticity!

Hadoop in detail – Adding a

File [2]

Hadoop in detail – Adding a File

o Pipeline: setup, data streaming, close (cf TCP?)

o Data streaming: handles packets (typically 64KB)
o Packets are ACKed as in typical networking protocols

o After adding a file, it can only be appended, not
modified
o I.e., if you want to modify, you have to rewrite the whole

file!

o Or: have, e.g., database entries appended instead of
modified (common practice)

o Also: FS like GFS/HDFS typically expect long-term storage
applications

Hadoop in detail – Reading a File

o Client asks NameNode for a list of replicas

o Tries closest replica (distance) first (lowest latency)

o Read can fail: DataNode failure, DataNode not

host of replica anymore, data corrupted

o Corruption detection: checksum on each data block

Hadoop in detail – Trackers

o JobTracker:

o Run at master node

o Distributes MapReduce tasks to client nodes (ideally

those who have the data or are in the same rack –

overhead?)

o TaskTracker

o Run at client node

o Accepts map, reduce, and sort/shuffle tasks from the

JobTracker

MapReduce - Overview

o Parallel data processing model for processing and
analysing massive amounts of data

o Observation/Motivation: Operations almost always
parallel

o Typically run on large clusters of commodity hardware
(i.e., cloud)

o Takes care of partitioning of data, scheduling of jobs,
and the communication between nodes in the cluster
o Programmer does not have to worry about that anymore!

MapReduce Model

o Data type: key-value records

o Map function:

(Kin, Vin) list(Kinter, Vinter)

o Group all identical Kinter values and pass to reducer

o Reduce function:

(Kinter, list(Vinter)) list(Kout, Vout)

MapReduce Model

o Optional: Combine function:

o Same as the reduce function, but executed on the map

nodes

o Can reduce network overhead (see example)

o W.r.t. network overhead: MapReduce tries to

schedule jobs close to where the data is stored in

GFS/HDFS (replicas at DataNodes in the latter)

o Functions have to be implemented by the coder

MapReduce Model

o Typical problem size:

o M = 200,000 (Map Tasks / # of input partitions)

o R = 5,000 (Reduce Tasks / # of output files)

o P = 2,000 (Processing elements)

Example: Word Count

Input: key is filename, value is a line in input file

def mapper(file, line):

 foreach word in line.split():

 output(word, 1)

Intermediate: key is a word, value is 1

def reducer(key, values):

 output(key, sum(values))

Word Count Execution

the quick

brown

fox

the fox

ate the

mouse

how now

brown

cow

Reduce

Reduce

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Map

Map

Map

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

k: brown, v: [1,1]

k: fox, v: [1,1]

k: how, v: [1]

k: now, v: [1]

k: the v: [1,1,1]

k: ate v: [1]

k: cow, v: [1]

k: mouse, v: [1]

k: quick, v: [1]

Another Example

o Google Maps: Road intersections?

o Large data sets of geographical data, how to
process?

o Input: List of roads and intersections

o Map function: Creates pairs of connected points
(road, intersection) or (road, road)

o Sort: sort by key

o Reduce function: Get list of pairs with same key

o Output: List of all points that connect to a particular
road)

What is MapReduce Used For?

o At Google:
o Index building for Google Search

o Article clustering for Google News

o Statistical machine translation

o At Facebook:
o Data mining

o Ad optimization

o Spam detection

o 1100 and 300 machines clusters: 0.5 PetaByte of data every
day!

o Non-tech companies:
o New York Times: MapReduce used in 100 EC2 instances to

convert articles since 1852 (4TB TIFF images) to PDF within 24
hours – cost: $240

MapReduce Insights

o Restricted key-value model

o Same fine-grained operation (Map & Reduce)

repeated on big data

o Operations must be deterministic

o Operations must be idempotent/no side effects

o Only communication is through the shuffle

o Operation (Map & Reduce) output saved (on disk)

MapReduce Pros

o Distribution is completely transparent

o Not a single line of distributed programming (ease,

correctness)

o Automatic fault-tolerance

o Determinism enables running failed tasks somewhere else

again

o Saved intermediate data enables just re-running failed

reducers

MapReduce Pros

o Automatic scaling

o As operations as side-effect free, they can be distributed to

any number of machines dynamically

o Automatic load-balancing

o Move tasks and handle slow tasks (stragglers)

• If MapReduce operation is nearly completed, speculatively execute

duplicate copies of stragglers

• Reasons for straggling: machine shared with other jobs, network

congestion, …

MapReduce Cons

o Restricted programming model
o Not always natural to express problems in this

model

o Low-level coding necessary

o Little support for iterative jobs (lots of disk access)

o High-latency (batch processing)

o Addressed by follow-up research
o Pig and Hive for high-level coding

o Spark for iterative and low-latency jobs

o Pregel for graph-processing

PIG / HIVE: Motivation

o Limitation of MR

o Have to use Map/Reduce model

o Not Reusable

o Error prone

o For complex jobs:

• Multiple stages of Map/Reduce functions

Pig

o High-level language and execution

environment:

o Produces sequences of MapReduce jobs

o Provides relational (SQL) operators

(JOIN, GROUP BY, etc)

o Easy to plug in Java functions

o Started at Yahoo! Research

o Runs about 50% of Yahoo!’s jobs

Example Problem

Given user data in one

file, and website data in

another, find the top 5

most visited pages by

users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

In MapReduce

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

In Pig Latin

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users = load ‘users’ as (name, age);
Filtered = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,
 count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Translation to MapReduce

Notice how naturally the components of the job translate into Pig Latin.

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Job 1

Job 2

Job 3

Hive [4]

o Relational database built on Hadoop

o Maintains table schemas

o SQL-like query language (which can also call

Hadoop Streaming scripts, HiveQL)

o Supports table partitioning,

complex data types, sampling,

some query optimization

o Developed at Facebook

Hive

o Started at Facebook in 2008

o Now used for 95% of Hadoop jobs at

Facebook

o ~200 engineers/data analysts use Hive per

month

Overview

o Hive is a data warehousing system to

store structured data on Hadoop file

system

o Hive Warehouse: 4800 cores,

o 5.5 PB storage (12TB per node)

o Provides an easy query on these data

by executing Hadoop MapReduce

plans

37 5/14/2014

Overview

o Intuition

o Make the unstructured data look like tables regardless

how it is really layed out

o SQL based query can be directly against these tables

(HiveQL)

o Generate specify execution plan for this query

38 5/14/2014

Hive Components

o Interfaces: CLI, GUI, JDBC/ODBC

o Thrift Server: interoperability service (support for

multiple languages)

o Driver: Manages lifecycle of a HiveQL query,

maintains session

o Compiler: compiles HiveQL to a sequence of

MapReduce tasks

o Optimizer: optimizes MR task sequence

o Execution Engine: executes tasks provided by compiler

in proper order

39 5/14/2014

40

Architecture

http://www.slideshare.net/cloudera/hw09-hadoop-development-at-

facebook-hive-and-hdfs

http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs

41

Architecture

http://www.slideshare.net/cloudera/hw09-hadoop-development-at-

facebook-hive-and-hdfs

http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs

42

Mapping to

MapReduce

o Very similar to PIG:

o Mapping = selection of

data from table(s)

o Reduce: JOIN or

GROUP operations

43

Where to store the tables?

o Metastore:
o System catalog maintaining meta-data about the

stored tables

o Meta-data is created on table creation

o Contains, for each table:

o List of columns and their types, owner,
storage, serialization/deserialization (SerDe)
information, user supplied key/value data

• Note: This information is not accessed sequentially
but more or less random

• HDFS/GFS not an optimal solution, use
standard file systems (NTFS, AFS, Oracle,…)

Metadata

o Database namespace

o Table definitions

o schema info, physical location In HDFS

o Partitions

o possible to split tables into parts (PARTITION BY)

44 Introduction to Hive 5/14/2014

Execution

o GROUP BY operation

o Efficient execution plans based on:

• Data skew:

– how evenly distributed data across a number of

physical nodes

– bottleneck / load balance?

• Partial aggregation:

– Group the data with the same group by value as

soon as possible

– In memory hash-table for mapper

– Earlier than combiner

45 Introduction to Hive 5/14/2014

Execution

o JOIN operation

o Traditional Map-Reduce Join

o Early Map-side Join

• very efficient for joining a small table with a large table

• Keep smaller table data in memory first

• Join with a chunk of larger table data each time

• Space complexity for time complexity

46 Introduction to Hive 7/20/2010

Serialization

o Ser/De

o Describe how to load the data from the file into a

representation that make it looks like a table;

o Lazy load

o Create the field object when necessary

o Reduce the overhead to create unnecessary objects

in Hive

o Java is expensive to create objects

o Increase performance

47 Introduction to Hive 7/20/2010

Hive – Performance

o QueryA: SELECT count(1) FROM t;

o QueryB: SELECT concat(concat(concat(a,b),c),d) FROM t;

o QueryC: SELECT * FROM t;

o map-side time only (incl. GzipCodec for comp/decompression)

o * These two features need to be tested with other queries.

http://www.slideshare.net/cloudera/hw09-hadoop-development-at-

facebook-hive-and-hdfs

Date SVN Revision Major Changes Query A Query B Query C

2/22/2009 746906 Before Lazy Deserialization 83 sec 98 sec 183 sec

2/23/2009 747293 Lazy Deserialization 40 sec 66 sec 185 sec

3/6/2009 751166 Map-side Aggregation 22 sec 67 sec 182 sec

4/29/2009 770074 Object Reuse 21 sec 49 sec 130 sec

6/3/2009 781633 Map-side Join * 21 sec 48 sec 132 sec

8/5/2009 801497 Lazy Binary Format * 21 sec 48 sec 132 sec

http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs
http://www.slideshare.net/cloudera/hw09-hadoop-development-at-facebook-hive-and-hdfs

49

Hive – Example: CLI

Hive - Limitations

o Not good for unstructured data

o Not good for small datasets (high latency)

o Not comparable to Opera etc. in terms of

performance

o No updates, transactions, etc.

o Performance tradeoff (see previous slide) when

compared to MR
o But keep in mind: easier expression, development effort is

reduced!

50 Introduction to Hive 7/20/2010

Spark [5]

Complex jobs, interactive queries and online

processing all need one thing that MR lacks:

Efficient primitives for data sharing

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

J
o

b
 1

J
o

b
 2

…

Stream processing

Spark Motivation

Complex jobs, interactive queries and online

processing all need one thing that MR lacks:

Efficient primitives for data sharing

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

J
o

b
 1

J
o

b
 2

…

Stream processing

Problem: in MR, the only way to share data

across jobs is using stable storage

(e.g. file system)  slow!

Examples

iter. 1 iter. 2 . .

.
Input

HDFS

read

HDFS

write

HDFS

read

HDFS

write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS

read

Opportunity: DRAM is getting cheaper  use

main memory for intermediate

results instead of disks

iter. 1 iter. 2 . .

.
Input

Goal: In-Memory Data Sharing

Distributed

memory

Input

query 1

query 2

query 3

. . .

one-time

processing

10-100× faster than network and disk

Spark Solution: Resilient

Distributed Datasets (RDDs)
o Partitioned collections of records that can be

stored in memory across the cluster

o Manipulated through a diverse set of
transformations (map, filter, join, etc)

o Fault recovery without costly replication
o Remember the series of transformations that built an

RDD (its lineage) to recompute lost data

o http://www.spark-project.org/

http://www.spark-project.org
http://www.spark-project.org/
http://www.spark-project.org/
http://www.spark-project.org/

o Rapid innovation in datacenter computing frameworks

o No single framework optimal for all applications

o Want to run multiple frameworks in a single datacenter

o …to maximize utilization

o …to share data between frameworks

Pig

Datacenter Scheduling Problem

Dryad

Pregel

Percolator

CIEL

Hadoop

Pregel

MPI
Shared cluster

Today: static partitioning Dynamic sharing

Where We Want to Go

Solution: Apache Mesos [6]

Mesos

Node Node Node Node

Hadoop Pregel
…

Node Node

Hadoop

Node Node

Pregel

…

o Mesos is a common resource sharing layer over which
diverse frameworks can run

o Run multiple instances of the same framework
o Isolate production and experimental jobs

o Run multiple versions of the framework concurrently

o Build specialized frameworks targeting particular
problem domains
o Better performance than general-purpose abstractions

Mesos Goals

o High utilization of resources

o Support diverse frameworks (current & future)

o Scalability to 10,000’s of nodes

o Reliability in face of failures

http://incubator.apache.org/mesos/

Resulting design: Small microkernel-like

core that pushes scheduling

logic to frameworks

http://incubator.apache.org/mesos/

Mesos Design Elements

oFine-grained sharing:

o Allocation at the level of tasks within a job

o Improves utilization, latency, and data locality

oResource offers:

o Simple, scalable application-controlled scheduling

mechanism

Element 1: Fine-Grained

Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

+ Improved utilization, responsiveness, data locality

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1 Fw. 3

Fw. 3 Fw. 2 Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2 Fw. 3

Fw. 1

Fw. 1 Fw. 2 Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

Element 2: Resource Offers

oOption: Global scheduler
o Frameworks express needs in a specification language,

global scheduler matches them to resources

+ Can make optimal decisions

 – Complex: language must support all framework
needs

– Difficult to scale and to make robust

– Future frameworks may have unanticipated needs

Element 2: Resource Offers

o Mesos: Resource offers

o Offer available resources to frameworks, let them pick which

resources to use and which tasks to launch

+ Keeps Mesos simple, lets it support future frameworks

- Decentralized decisions might not be optimal

Mesos Architecture

MPI job

MPI

scheduler

Hadoop job

Hadoop

scheduler

Allocation

module

Mesos

master

Mesos slave

MPI

executor

Mesos slave

MPI

executor

task task

Resource

offer

Pick framework to

offer resources to

Mesos Architecture

MPI job

MPI

scheduler

Hadoop job

Hadoop

scheduler

Allocation

module

Mesos

master

Mesos slave

MPI

executor

Mesos slave

MPI

executor

task task

Resource

offer

Pick framework to

offer resources to

 Resource offer =

 list of (node, availableResources)

 E.g. { (node1, <2 CPUs, 4 GB>),

 (node2, <3 CPUs, 2 GB>) }

Mesos Architecture

MPI job

MPI

scheduler

Hadoop job

Hadoop

scheduler

Allocation

module

Mesos

master

Mesos slave

MPI

executor

Hadoop

executor

Mesos slave

MPI

executor

task task

Pick framework to

offer resources to

task
Framework-specific

scheduling

Resource

offer

Launches and

isolates executors

Summary

o Cloud computing/datacenters are the new
computer
o Emerging “Datacenter/Cloud Operating System”

appearing

o Main concepts: virtualization, load balancing, …

o Pieces of the DC/Cloud OS
o Networks (SDN, OpenFlow)

o High-throughput filesystems (GFS/HDFS)

o Job frameworks (MapReduce, Spark, Pregel)

o High-level query languages (Pig, Hive)

o Cluster scheduling (Apache Mesos)

References
o [1] S. Ghemawat, H. Gobioff and S. Leung. The Google File System,

Proceedings of the ACM SOSP 2003

o [2] K. Shvachko, H. Kuang, S. Radia and R. Chansler. The Hadoop

Distributed File System, Proceedings of the 26th IEEE Symposium on

Mass Storage Systems and Technologies

o [3] Olston, Christopher, et al. "Pig latin: a not-so-foreign language for

data processing." Proceedings of the 2008 ACM SIGMOD international

conference on Management of data. ACM, 2008.

o [4] Thusoo, Ashish, et al. "Hive: a warehousing solution over a map-

reduce framework." Proceedings of the VLDB Endowment 2.2 (2009):

1626-1629.

o [5] Zaharia, Matei, et al. "Spark: cluster computing with working

sets."Proceedings of the 2nd USENIX conference on Hot topics in

cloud computing. 2010.

o [6] Hindman, Benjamin, et al. "Mesos: A platform for fine-grained

resource sharing in the data center." Proceedings of the 8th USENIX

NSDI. 2011.

o [7] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data

processing on large clusters." Communications of the ACM 51.1

(2008): 107-113.

