Machine Learning and Pervasive Computing

Stephan Sigg

27.04.2015

Outline

Presentations – allocation

Projects – Structure/requirements

Projects – presentation

Topics for presentation

	When	What	Who
	18.05.2015	Good features for ML applications	Dorna,
		''	Azadeh
	18.05.2015	Body sensor networks	Qin
	01.06.2015	Function principles of physical sensors and sensing	Sebastian,
		modalities (a)	Marcel
	08.06.2015	Function principles of physical sensors and sensing	Theodor
		modalities (b)	
	15.06.2015	Dealing with noise and missing values (Compressive	Dimitra, Gio-
		Sensing) (a)	vanna
	22.06.2015	Neural network learning	Ludwig,
			Hannes
	06.07.2015	Dealing with noise and missing values (Compressive	Julio,
		Sensing) (b)	Clemens
_	13.07.2015	Reinforcement learning	Alireza,
			Thorben

Rationale

- Gain some insight into a related topic (see the bigger picture) and to
- 2 share this with the other students in the course

Presentation structure

Rationale

- Gain some insight into a related topic (see the bigger picture) and to
- 2 share this with the other students in the course

Comprehensive introduction/overview
Informative understand/explain concepts
Audience other students in the class

Presentation structure

Rationale

- Gain some insight into a related topic (see the bigger picture) and to
- 2 share this with the other students in the course

Comprehensive introduction/overview Informative understand/explain concepts

Audience other students in the class

- Try to explain to others such that they are able to understand
 - What is the problem/challenge
 - How is it solved
 - Important results
- 10-15min. 1-2 Persons

Outline

Presentations – allocation

Projects - Structure/requirements

Projects – presentation

Projects: Structure and requirements

Deadline	What		
	Written description/introduction of the project: Members,		
04.05.2015	Aim (motivation), Sensors/data utilised, detailed descrip-	$\frac{1}{2}$ -1	
	tion of the data, novelty		
11.05.2015	Related Work (approx. 5-7 papers, description of their con-	1–2	
11.05.2015	tribution and relation to own project)		
18.05.2015	Description of experimental setting to generate the data	$\frac{1}{2}$ -1	
01.06.2015	Description data recorded and plan for features to extract	$\frac{1}{2}$ -1	
08.06.2015	Featues and feature extraction; Features utilised, descrip-	1/2	
00.00.2013	tion of feature subset selection approach and results	2	
15.06.2015	Describe the classifier to be utilised, Training and testing	$\frac{1}{2}$	
13.00.2013	design		
22.06.2015	Discuss results achieved	1–2	
29.06.2015	Improved results	$1\frac{1}{2}$ -2	
06.07.2015	Revised Related work (new publications/findings e.g. 10	$1\frac{1}{2}$ -2	
00.07.2013	papers in total)	1 2 - 2	
13.07.2015	Complete the paper: Abstract and conclusion	$\frac{1}{2}$ -1	

Projects: Organisation

create repositories for each project.

• Paper-template:

For simple organisation, please create a GitHub profile. I will

http://www.ieee.org/conferences_events/conferences/publishing/templates.html

Project presentations

Members	Торіс	
Giovanna Edith	Proteine clustering	
Parra Hipolito, Julio		
Cesar Garcia Viz-		
caino,Bhabajeet		
Ludwig Schneider,		
Hannes Blut, Marcel	Sailboat Projekt	
Simon Langenberg		
Dorna, Azadeh	Document classification	
Theodor, Sebastian	Detect modes of transportation	
Qin, Vimo, Clemens	Distinct person classification from on-body sensors	
Alireza, Thorben,	Classify instruments based on audio files	
Dimitra	cassing meanance success on dudio mea	

Questions?

Stephan Sigg stephan.sigg@cs.uni-goettingen.de