Computer Networks Group
University of Göttingen, Germany

Homework \#5

(Due on 2 December 2010)

Given the following network, use Dijkstra's algorithm to find the least cost paths from node u. Please provide a table showing the steps of the algorithm, a graph showing the resulting shortest-path tree from u and the final forwarding table of u.

3

Step	\mathbf{N}^{\prime}	$\mathbf{D}(\mathbf{v}), \mathbf{p}(\mathbf{v})$	$\mathbf{D}(\mathbf{w}), \mathbf{p}(\mathbf{w})$	$\mathbf{D}(\mathbf{x}), \mathbf{p}(\mathbf{x})$	$\mathbf{D}(\mathbf{y}), \mathbf{p}(\mathbf{y})$	$\mathbf{D}(\mathbf{z}), \mathbf{p}(\mathbf{z})$

Resulting shortest-path tree

y

Resulting forwarding table in \mathbf{u}

Destination	Link

Given the following network, use the Distance Vector algorithm to find the least cost paths for all nodes. Fill the provided tables and indicate with arrows between the tables when a node sends a distance vector to another node.

$$
9
$$

Node w		cost to			
		W	X	y	Z
${ }_{0}^{E}$	W				
	X				
	y				
	Z				

Node W		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node w		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node X		cost to			
		W	X	y	Z
${ }_{c}^{E}$	W				
	X				
	y				
	Z				

Node X		cost to			
		W	X	y	Z
$\underset{0}{E}$	W				
	X				
	y				
	Z				

Node x		cost to			
		W	X	y	Z
${ }_{c}^{E}$	W				
	X				
	y				
	Z				

Node X		cost to			
		W	X	y	Z
$\underset{y}{E}$	W				
	X				
	y				
	Z				

Node y		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node y		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node y		cost to			
		W	X	y	Z
${ }_{c}^{E}$	W				
	X				
	y				
	Z				

Node y		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node Z		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node Z		cost to			
		W	X	y	Z
E	W				
	X				
	y				
	Z				

Node z z	cost to				
	w	x	y	z	
	w				
	x				
	y				
	z				

Node z z	cost to				
	w	x	y	z	
Z	w				
	y				
	z				

Compare Link State routing algorithms to Distance Vector algorithms in terms of scalability and robustness.

Explain the count-to-infinity problem using a simple example. How can this problem be avoided?

How are routing policies used in BGP. Give one example.

What is the difference between Intra-AS and Inter-AS routing? Why are different routing protocols needed for each? Name one example for each category.

