Telematics Homework #12

Florian Tegeler 28th of January 2010

Announcements

Final exam: Thursday 04.02.2010
 10:00 - 12:00 : GZG - MN08

○ 10:00 -12:00 : GZG - MN08

- Language: English + German, answers possible in both languages
- No additional resources (calculator etc.) allowed. Just bring pens ;).

Secure E-Mail

Alice:

- \circ generates random symmetric private key, K_S.
- \circ encrypts message with K_S (for efficiency)
- $_{\odot}\,$ also encrypts K_{S} with Bob's public key.
- $_{\odot}$ sends both K_S(m) and K_B(K_S) to Bob.

Bob: uses his private key to decrypt and recover $K_{\rm S}$ $_{\odot}\,$ uses $K_{\rm S}$ to decrypt $K_{\rm S}(m)$ to recover m

Why symmetric keys?

- Why is a symmetric key used in most protocols to encrypt a data payload (the message etc.), even if a public/private key infrastructure exists?
- Public/Private keying more costly
- Minimal use of public/private key minimizes the key exposure
 - Symmetric key can be generated each time on the fly and is therefore always fresh
 - Public/Private key is always the same. Encrypting large amounts of data could compromise the key... (although no efficient algorithm is known yet)

PGP E-Mail signature

N∽E∽T» ₩-O-R-K-S Verification: Bob decrypts the PGP signature and obtains H(m). Additionally he computes H(m) for the message himself and computes it with the H(m) Alice computed.

SSL

- What are the three main phases of SSL?
 - 1. Handshake (TCP connection, authentication + master secret generation)
 - $_{\circ}$ 2. Key derivation
 - 3. Data transfer
- On what layer does SSL reside and why is that advantageous?
 - provides transport layer
 security to any TCP-based
 application using
 SSL services.

TCP enhanced with SSL

SSL

- What are the three main phases of SSL?
 - 1. Handshake (TCP connection, authentication + master secret generation)
 - $_{\circ}$ 2. Key derivation
 - 3. Data transfer
- On what layer does SSL reside and why is that advantageous?
 - provides transport layer
 security to any TCP-based
 application using
 SSL services.

TCP enhanced with SSL

IPsec

- Please sketch one typical scenario, where IPsec is used today.
 - VPN gateway at company or university. E.g.
 134.76.22.1 is the VPN Gateway for the GWDG
- What are the two main protocols used in IPsec and what is their primary difference with respect to security properties?
 - Authentication Header (AH): Ensures authentication and data integrity. No encryption!
 - Encapsulated Security Payload (ESP): Ensures authentication, data integrity and encryption.

802.11i

- Should ensure better protection than WEP
 WPA is a subset of 802.11i
- Who is handling the authentication information in an 802.11i scenario?
 - Using TLS-EAP (Extensible Authentication Protocol over Transport Layer Security) to contact an AAA (Authentication, Authorization, Accounting) Server

Firewalls

- What is the purpose of a firewall and what are filter rules?
 - o Isolation of own network from internet!

Filter rules

- The firewall can be configured to only let certain packets pass. An administrator could be interested in setting up rules like:
 - No telnet connections to hosts behind the FW
 - Prevent outside machines to connect to inside machines, but still inside machines can connect to outsiders
 - Prevent web radios
 - Many more...

Thank you

Any questions?

