
Computer Networks 
WS20/21

Exercise 3



Recommendation

Try to borrow (or buy) this book:

Computer Networking: A Top Down 
Approach 

7th edition. Jim Kurose, Keith Ross,  
Pearson, 2019. 

It is very good to understand!



Transport Layer

• Q: What entities does the transport layer connect in contrast to the 
network layer?

• The transport layer connects processes while the network layer 
connects hosts/networks



Multiplexing

• Q: Why is multiplexing and demultiplexing used for at the transport layer and what has 
the concept of ports to do with this?

• Multiplexing and demultiplexing is needed to reliably match incoming and outgoing 
packets to the right processes

• Multiplexing at sending host: 
• Gathering data from multiple sockets (belonging to different processes)
• Enveloping data with header information for socket identification (at receiving host)
• Segmentation of data
• Passing data to the network-layer

• Demultiplexing at receiving host: 
• Identification of socket each incoming segment belongs to and 
• Delivering received segment to correct socket

• Port numbers are used to identify the sockets



TCP vs. UDP

• TCP
• Reliable data transfer
• Connection-oriented 

transport
• In-order delivery
• Retransmission
• Congestion control

• imposes transmission-
rate constraints

• Functions can not be 
turned off

• UDP
• Best-effort data transfer
• Connectionless
• Possible out-of-order 

delivery
• Segments may get lost
• Faster as TCP

• No congestion control
• No connection 

establishment

Q: Please compare TCP and UDP in terms of the 
services they offer to the application layer.



TCP vs. UDP (II)

• Q: For which kinds of applications would you prefer UDP over TCP.

• When transmission rate constraints enforced by TCP are not 
wanted/needed

• When reliability of TCP is not wanted/needed

• Examples: Multimedia (e.g.VoIP, streaming media) or “simple” 
services like SNMP, DNS



UDP checksums

• Assume a UDP transport has received a datagram which consists of 
the following 16-bit words and the given checksum. Please verify the 
checksum.

• 1010 1010 1010 1010 (1st 16 bit word)

• 1011 1011 1011 1011 (2nd 16 bit word)

• 1100 1100 1100 1100 (3rd 16 bit word)

• 1110 1100 1100 1100 (recvd. checksum)



UDP checksums (cont‘d)

• 1) Sum of first two words:

1010 1010 1010 1010

+ 1011 1011 1011 1011
-------------------

1 0110 0110 0110 0101

0110 0110 0110 0101

+ 0000 0000 0000 0001
-------------------
0110 0110 0110 0110

The overflowing 1 must be added 

to the last digit!



UDP checksums (cont‘d)

• 2) Add third word:

0110 0110 0110 0110

+ 1100 1100 1100 1100

-------------------

1 0011 0011 0011 0010

0011 0011 0011 0010

+ 0000 0000 0000 0001
-------------------
0011 0011 0011 0011

The overflowing 1 must be added 

to the last digit!



UDP checksums (cont‘d)

• 3) Add received checksum:

0011 0011 0011 0011

+ 1110 1100 1100 1100

-------------------

1 0001 1111 1111 1111

• 4) Result ≠ 1111 1111 1111 1111 therefore verification failed



Reliable data transfer

• Q: Assume you want to reliably transfer data over a channel with bit 
errors but no loss. An error detection mechanisms is already 
implemented. Which simple mechanism can you use to recover from 
errors? What flaw does this simple mechanism have?



Reliable data transfer (cont’d)

• Method: Packet arrives
• Without errors: Receiving host sends acknowledgement message (ACK) to the 

sending host

• With errors: Receiving host sends negative acknowledgement message (NAK) 
to the sending hot

• Flaw: If ACK/NAK message gets corrupted, sender doesn’t know if 
packet was received without errors



Reliable data transfer (II)

• Q: Assume you want reliably transfer data over a channel with bit 
errors and loss. What additional mechanism do you need to 
introduce. Give an example of how this mechanism can recover from 
the loss of a packet.

• Sender needs to maintain a timer for unacknowledged packets. If an 
ACK for a packet is not received within a certain time frame, the 
sender can transmit the packet again.



Reliable data transfer (II) (cont’d)



Premature timeout in rdt3.0
(Lecture addendum)
• In rdt3.0 an ACK for the wrong 

sequence number is ignored (as 
opposed to rdt2.2 where it leads 
to a retransmit)

• Therefore, in the example, the 
second ACK1 is ignored



Any Questions?

Mail us:

Yachao Shao: yachao.shao@cs.uni-goettingen.de

Fabian Wölk: fabian.woelk@cs.uni-goettingen.de


