
Distributed Hash Tables

Advanced Computer Networks

Summer Semester 2012

P2P Systems

o We saw unstructured systems:

o Napster (still uses some client/server)

o Gnutella

o BitTorrent (Swarming, but again uses trackers)

o Structured systems:

o Routing & Lookup

o DHTs

o These slides are based on a lecture by Prof. Roscoe,

ETH Zürich, and provided with his kind permission.

Problem Space

o Challenge: spread lookup database among

P2P participants

o Goals:

o Scalable – operates with millions of nodes

o Self-organized – no central, external control

o Load-distributing – every member should

contribute (at least ideally)

o Fault tolerant – robust against node leaves or

failures

o Robustness – resiliance against malicious activity

Idea

o Distributed Hash Tables

o Hash content identifiers to machines

o Hash IP addresses

o Store content (or content locator) at machine with

closest hash value

o Originally 4 papers submitted to SIGCOMM

2001:

o CAN, Chord, Pastry, Tapestry

Background: Hash Functions

o Hash function maps arbitrary input sequence to fixed

length output:

o H(m) = x, x of fixed length

o Crypto-Hashes:

o Small input changes result in large output changes

(Avalanche criterium)

o If H(m1) = x is known, it is hard to find another m2 giving

H(m2) (collision resistant)

o Inheritly hash functions span whole 2k space (k bits

hash length)

MD5 / SHA-1

o Message Digest Algorithm 5

o 128 bit hash values

o Weak collisions found

o SHA-1 (similar to MD4)

o 160 bit hash values

o Stronger than MD5, but „under researcher‘s attack“: find

collisions in 269

o But: Both algorithms efficiently map input

homogeniously to 2k space

DHTs

o Index data by hash value

o Assign each node in the network a portion of

the hash address space

o DHT provides the lookup function

Example: Chord

o Published 2001 at SIGCOMM by Stoica et al. „Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications”

o Keys are SHA-1 hashes – 160 bit identifiers

o Key: Identifier of a data item

o Value: Identifier of a node

o Host (key,value) pair at node with ID larger or

equal to key – successor(key)

Identifier Space

o Identifier in 24 space

o Space from 0..15

o Nodes pick IDs:

• 2,5,6,11,14 covered by nodes

• Remaining values are not

directly covered by a node

Successor

o First node in clockwise direction with ID larger

or equal the key

o Examples:

o succ(6) = 6

o succ(12) = 14

o succ(15) = 2

How to store and locate data?

o Each (key,value) pair is assigned the

identifier H(key)

o Each item is stored at

its succ(H(key))

Drink Location H(Drink)

Beer Göttingen 12

Wine France 2

Whisky Scotland 9

Wodka Russia 14

Successor Pointer

o Each node points to its successor

o Known as node‘s succ

pointer

o Successor of n is

succ(n+1)

o Example:

o 0‘s succ = succ(1) = 2

o 2‘s succ = suss(3) = 5

o ...

Basic Lookup of Data

o Lookup key:

o Calculate H(key)

o Follow succ pointers until key is found

o Lookup time: O(n)

o Example:

o „Where can I drink Whisky?“

o Calculate H(Whisky) = 9

o Traverse nodes:

• 2,5,6,11

o Return „Scotland“

Scalable Lookup

o Each node maintains finger table (max k entries)

o for i in 0..k-1: finger[i] = succ(n+2i-1)

o Point to succ(n+1)

o Point to succ(n+2)

o Point to succ(n+4)

o ...

o Point to succ(n+2i-1)

o Makes lookup time logarithmic!

o O(log n)

Routing

o Determines the next hop

o Each node n knows

succ(n+2i-1) for all i=1..k

o Forward queries for key

to then highest

predecessor of key

o Routing entries = log2(n)
k=4, n=16

Routing cont‘d

o Routing table size l

o Node 9 was the

highest 1 could

reach

o Node 9 is querying

again, finger to 13 is

best

k=4, n=16

Routing cont‘d

o 13 is handled by 14

o 14 completes the

route:

o 15 is found at 0

Routing cont‘d

o From node 1, 3 hops to node 0 where item 15

is stored

o k=4 equals an ID space of 16, therefore the

maximum number of hops is:

o Log2(16) = 4

o Average complexity is ½ log(n)

Routing cont‘d

o Such routing algorithms solve the lookup problem

o General concept:

o Each node has only a limited view on the network

o A node that receives a message containing a destination ID

that is not managed by that node, it just forwards the request

to the closest hop

o Here, algorithm is based on numeric closeness

o In Gummadi et al., „The Impact of DHT Routing

Geometry on Resilience and Proximity“, SIGCOMM

2003, implications are discussed

Recursive vs. Iterative Lookup

o Recursive: Each node forwards the request

(as shown) to the next hop

o Fast, efficient

o Each node can optimize forwarding

o Iterative: The requesting client queries the

next hop iteratively from the nodes

o Allows the lookup client to keep in control

o Lookup client detects and localizes failures

Achieved goals

o The DHT is scalable, as operations are

performed in log(n)

o It is self-organized as each node directly

knows its position (thanks to the hash

function) and learns about the next hops

o On average load-distributing

o What about joins and especially leaves?

Node Join and Leave

o Node join:

1. Bootstrap: a new node contacts a known node in the DHT

2. The new node gets a partion of the address space

3. Routing information is updated

4. The new node retrieves all tuples for which it is responsible

o Node departure:

o Replication and load balancing

o Node failure:

o Reactive or proactive recovery

o Maintenance, load balancing, redistribution of tuples

o Data is lost if not replicated!

Node Join and Leave

o Join:

o Lookup of own ID‘s successor

o Contact that to get successors

and predecessor

o Leaves:

o Ping successors regularly

o Always ensure x live nodes in

successor set

o Thereby, failures are treated

as „normal“

Node Join Example

o Assume node 9 joins

Node Join Example cont’d

o The new node takes

over the docs in its

“responsibility” range

o Docs 9,8 from

its successor

Node Leave

o Assume node 12

leaves gracefully

Node Leave cont’d

o Data is transferred to

succ(12) = 14

o Node 12 informs

predecessor and

successor, who

update their

finger tables

Direct vs. Indirect Storage

o Direct storage:

o Actual data is stored at the node responsible for it

o The data is copied towards the responsible node upon node

join

o The node that contributed the data can leave without loss of

its data

o But: High storage and communication overhead!

o Indirect storage:

o Instead of data, the references to the data are stored

o The inserting node keeps the data

o Lower load on the DHT

The Fragile Ring

o Problem: Everything is

organized in a fragile ring

structure

o Failure of a node breaks

the ring and data is lost

o No way to recover as

previous predecessor and

successor don’t know

about each other!

Successor Sets

o As a solution, each node keeps:

o A Successor set with pointers to the r

closest successors

o Predecessor pointer

o If successor fails, replace

with closest alive successor

o If predecessor fails, set

pointer to nil

o Replicate objects throughout

the successor set

Further Challenges

o How does a node learn its:

o Predecessors?

o Fingers?

o What if “better” fingers come along later?

o How would a node find out?

o How does a node react to failing or leaving

fingers?

o All basically the same problem

Periodic Stabilization

o Used to make pointers eventually correct

o Requires an additional predecessor pointer

o First node met in anti-clockwise direction starting at n-1

o A node n joins the DHT through a node o:

o Find n’s successor by lookup(n)

o n sets its successor to the found successor

o Stabilization fixes the rest

• stabilize() function is run peridically by each node

o The new node does not determine its predecessor: its

predecessor detects and fixes inconsistencies

Periodic Stabilization Example

1. 9 joins through node 0

2. 9 sets its predecessor

to nil

3. 9 asks 0 for succ(9).

Receives “12”

4. 9 sets its succ to 12

Periodic Stabilization Example

o 9 runs stabilize()

1. 9 asks 12 for its

predecessor

2. 12 replies with “7”

3. 9 notifies 12 that 9

is now its

predecessor

Periodic Stabilization Example

o 7 runs stabilize()

1. 7 discovers from 12

that pred(12) is now 9

2. 7 sets successor to 9

3. 7 notifies 9

4. 9 sets pred(9) to 7

Stabilizing Fingers?

o Each node runs fix_fingers() periodically

o Refresh finger table entries and store the index of the next

finger to fix

o This is also the initialization procedure for the finger table

n.fixfingers()

next = next +1;

if (next > k) //check for max size

 next = 1;

finger[next] = find_successor(n+2^(next-1));

Chord in a “Tree View”

o Finger tables are Chord’s core

o Providing O(log n) hop routing by at least halving

the distance to the target by each hop

o Forest of binomial trees rooted at each key

Chord - Conclusion

o Lookup time: O(log n)

o Drawbacks:

o Rigidity

• Complicates recovery from failed nodes and routing table

• Precludes proximity-based routing

o Unidirectional routing

o Incoming traffic is not used to re-enforce routing

tables

o Fault-tolerant, but not very robust.

Kademlia - Goals

o Flexible routing table

o Benefits from proximity-based routing

o Minimal maintenance as configuration information

automatically spreads together with key lookups

Kademlia: Distance Metric

o The distance between two 160-bit identifiers (e.g.,

SHA-1 hashes) is defined as their bit-wise XOR

interpreted as an integer

o XOR example:
o A = 0 1 0 1 1 0 (22)

o B = 0 1 1 0 1 1 (27)

o A XOR B = 0 0 1 1 0 1 (13)

o Intuition: Differences at higher order bits matter more

than differences at lower order bits

Advantages of Distance Metric

o The exclusive OR operation shares some

properties with “normal” geometric distances:

o The distance between a node and itself is zero

D(x,x) = 0

o The distance function is symmetric: D(x,y)=D(y,x)

o It follows the triangle inequality:

D(x,z) ≤ D(x,y) + D(x,z)

o The distance is not reflecting any topological

properties!

Kademlia: Routing Table

o For each 0 ≤ i < 160, each node keeps a list

of the triple <IP,port,nodeID> for nodes of

distance of 2i and 2i+1 from itself

o Each list is called a bucket and stores at most

k triples

o A k-bucket stores at most k nodes that are at

distance [2i, 2i+1]

o Each bucket is kept sorted by time last seen

Example for k=1

o Node 01001

o Distance [20,21): 01000

o Distance [21,22): 0101X

o Distance [22,23): 011XX

o Distance [23,24): 00XXX

o Distance [24,25): 1XXXX

Kademlia Topology

o Kademlia treats nodes and keys as leaves of a binary tree

o Each node knows of at least one node in each of the subtrees

Kademlia Routing

o Iterative lookup:

o Longest matching prefix forwarding: A query is

forwarded to the “best” subtree until the

destination is reached

o A node often knows of more than a single node

per subtree so that queries can be forwarded in

parallel to multiple nodes in a subtree (resliance!)

o Lookup time: O(log n)

Kademlia: Updating Buckets

o Whenever a node receives any message, it

updates the appropriate k-bucket based on

the sender’s information

o If the bucket is full, the oldest entry is

removed, if it is not alive

o Keeping old nodes alive maximizes the probability

that the nodes in the bucket will remain online (the

long-time persistent nodes)

Kademlia Conclusion

o Easy table maintance

o Tables are updated when lookups are performed

o Fast lookup by making parallel searches –

but at the expense of increased traffic

o Used in many deployed file sharing networks:

o Kad Network (eMule)

o BitTorrent when using trackerless BT

o Gnutella DHT

