Advanced Computer Networks

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

30.04.2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

Revision: Secure authentication in the Internet

- Motivation: spontaneous secure authentication for mobile devices
- Radio channel
- Security from RF
- Security from noise
- Security from audio
- Physical random functions
- Conclusion

Desirable properties of secure communication

Confidentiality

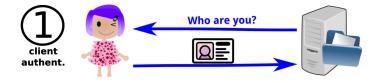
Message integrity

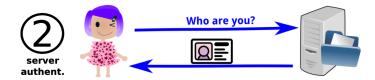
Authentication (in communication systems)

Sender and receiver should be able to confirm the identity of the other party

Operational security

3

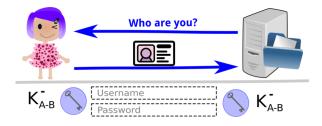

A B > A B >


A ►

Radio channel Security from RF Security from noise

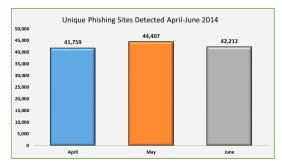
Security from audio PUFs

Authentication



Radio channel Security from RF Security from noise Security from audio PUFs

Client-authentication


Login Symmetric key known to both sides ▲□ > < □ > < □ >

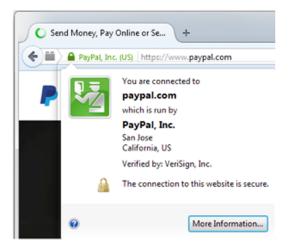
Revision Motivation Radio channel Security from RF Security from noise Security from audio PUFs Chea Ting <chea.ting@spam.com> Von: An ۵ "Stephan Sigg" <stephan.sigg@cs.uni-goettingen.de> \$ An My new document Betreff: Dear Stephan, Please check out my modified document on Google docs: https://www.docs.google.com Cheers, Klaus

2

PUFs

Theft through phishing activities costs U.S. banks and credit card issuers an estimated \$2.8 billion annually.¹

April through June 2014 saw the second-highest number of phishing sites ever observed in a quarter. [p. 4]


 $^2 {\it from: APWG Phishing Attack Trends Reports (http://www.antiphishing.org/resources/apwg-reports/)}$

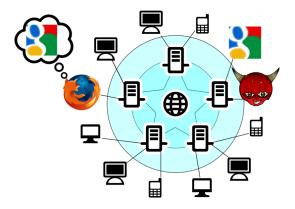
¹Gartner Group, http://www.gartner.com/newsroom/id/565125

PUFs

Your browser knows the identity of the website visited

< 17 > * E > * E >

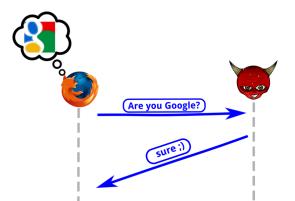
Why is authentication difficult in communication systems?



イロト イボト イヨト イヨト 3

Why is authentication difficult in communication systems?

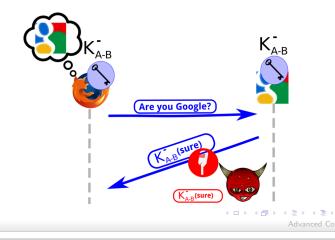
 \Rightarrow Unlike face-to-face communication, other party is 'invisible'



PUFs

Why is authentication difficult in communication systems?

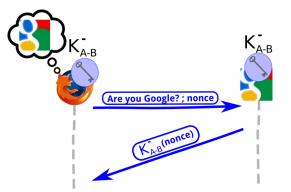
 \Rightarrow Unlike face-to-face communication, other party is 'invisible'


B 5

3

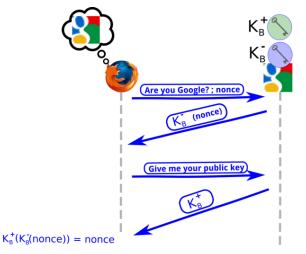
Why is authentication difficult in communication systems?

- \Rightarrow Unlike face-to-face communication, other party is 'invisible'
- \Rightarrow Replay attacks

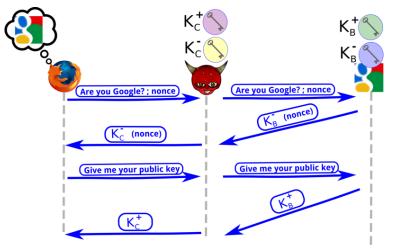


A > 4

∃ ► < ∃ ►</p>


Why is authentication difficult in communication systems?

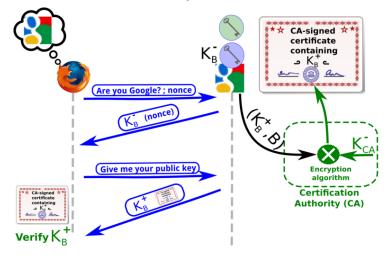
- \Rightarrow Unlike face-to-face communication, other party is 'invisible'
- \Rightarrow Replay attacks
- Solution? Using a nonce to ensure freshness


Use asymmetric cryptography instead?

Security from audio PUFs

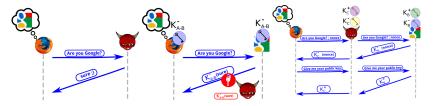
Use asymmetric cryptography instead?

 \Rightarrow Vulnerable to Man-in-the-Middle attacks


э

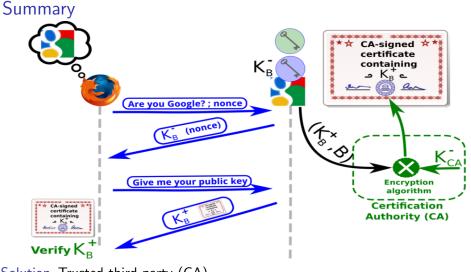
Security from RF Security from noise

Security from audio PUFs


Solution: Certified Authority

 \Rightarrow CA issued certificate contains K_B^+, B ; digitally signed by K_{CA}^-

Summary


- Authentication in communication systems is challenging *
- Freshness/randomness to protect against replay attacks *
- Asymmetric cryptography vulnerable to MiM attacks *

Solution Trusted third party (CA)

A ►

∃ >

Solution Trusted third party (CA)

2

<ロ> <同> <同> < 回> < 回>

Outline

Revision: Secure authentication in the Internet

- Motivation: spontaneous secure authentication for mobile devices
- Radio channel
- Security from RF
- Security from noise
- Security from audio
- Physical random functions
- Conclusion

Security from RF Security from noise Security from audio

PUFs

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () 3

Security from audio

PUFs

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

Security from RF Security from noise

Security from audio PUFs

Motivation

Revision

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

Security from RF Security from noise

Security from audio PUFs

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

wireless signal propagation omnidirectional Similar problem as in wired networks

However, typically no certificates in D2D communication

Revision

(Motivation)

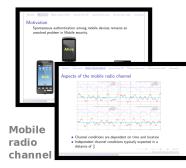
Radio channel Security from RF Security from noise Security from audio PUFs

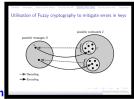
Conclusio

Revision

(Motivation)

Radio channel Security from RF Security from noise Security from audio PUFs


Conclusio

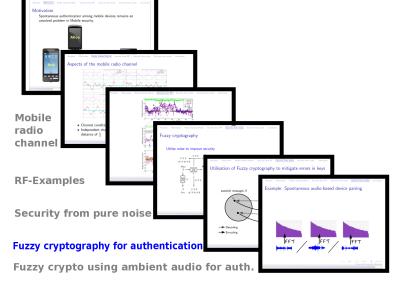


Revision Motivation) Radio channel Security from RF Security from noise Security from audio PUFs

Fuzzy cryptography for authentication

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Revision (Motivation) Radio channel Security from RF Security from noise Security from audio PUFs Concl



Revision (Motivation) Radio channel Security from RF Security from noise Security from audio PUFs Conclusi

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Revision (Motivation) Radio channel Security from RF Security from noise Security from audio PUFs Conclusio

・ロ ト ・ () ・ () ・ () ・ () ・ う 、 の へ の Advanced Computer Networks

(Motivation) Radio channel Security from RF Security from noise Security from audio PUFs

Revision

Conclusio

Security from noise

audio PUFs

Conclusio

Aspects of the mobile radio channel

RF transmission

- Electromagnetic signals
- Transmitted in wave-Form
- Omnidirectional transmission
- Speed of light

•
$$c = 3 \cdot 10^8 \frac{m}{s}$$

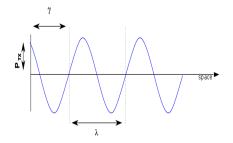
r 🖓

∃→ < ∃→</p>

Aspects of the mobile radio channel

RF signal

- Transmission power:
 - $P_{TX}[W]$
- Frequency:


•
$$f\left[\frac{1}{sec}\right]$$

Phase offset:

•
$$\gamma[\pi]$$

• Wavelength:

•
$$\lambda = \frac{c}{f}[m]$$

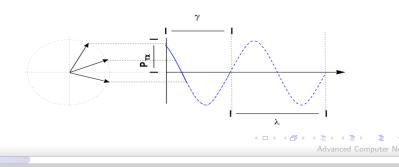
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

3

< 17 >

Aspects of the mobile radio channel

RF signal


Real part of rotating vector

•
$$\zeta = \Re \left(e^{j(ft+\gamma)} \right)$$

Instantaneous signal strength:

• $\cos(\zeta)$

• Rotation Speed: Frequency f

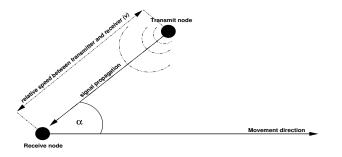
Security from RF Security from noise Security from audio PUFs

Conclusio

Video: Changes in Audio

Security from RF Security from noise Security from audio PUFs

Conclusio


Video: Doppler Effect

Doppler

Advanced Computer Networks

3

Aspects of the mobile radio channel

Doppler Shift

- Frequency of received and transmitted signal may differ
- Dependent on relative speed between transmitter and receiver
- $f_d = \frac{v}{v} \cdot \cos(\alpha)$

Noise

- In every realistic setting, noise can be observed on the wireless channel
- Typical noise power:³

$$P_N = -103 dBm$$

• Value observed by measurements

Advanced Computer Networks

³3GPP: 3rd generation partnership project; technical specification group radio access networks; 3g home nodeb study item technical report (release 8). Technical Report 3GPP TR 25.820 V8.0.0 (2008-03) (March)

Noise

• Thermal noise can also be estimated analytically as

$$P_N = \kappa \cdot T \cdot B$$

- $\kappa = 1.3807 \cdot 10^{-23} \frac{J}{K}$: Boltzmann constant
- T: Temperature in Calvin
- B: Bandwidth of the signal.

Example

- GSM system with 200*kHz* bands
- Average temperature: 300K
- Estimated noise power:

$$P_N = \kappa \cdot T \cdot B$$

= 1.3807 \cdot 10^{-23} \frac{J}{K} \cdot 300 K \cdot 200 kHz
$$P_N = -120.82 dBm$$

3

Path-loss

- Signal strength decreases while propagating over a wireless channel
- Order of decay varies in different environments
- Impact higher for higher frequencies
- Can be reduced by antenna gain (e.g. directed)

Location	Mean Path loss exponent	Shadowing variance σ^2 (dB)
Apartment Hallway	2.0	8.0
Parking structure	3.0	7.9
One-sided corridor	1.9	8.0
One-sided patio	3.2	3.7
Concrete Canyon	2.7	10.2
Plant fence	4.9	9.4
Small boulders	3.5	12.8
Sandy flat beach	4.2	4.0
Dense bamboo	5.0	11.6
Dry tall underbrush	3.6	8.4

프 > > ㅋ ㅋ > э

Path-loss

- For analytic consideration: Path-loss approximated
- Friis free-space equation:

$$P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

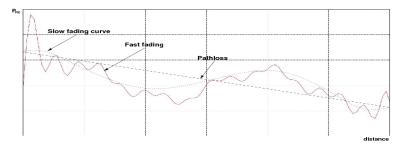
イロト イポト イヨト イヨト 3

Path-loss

$$P_{RX} = P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

Utilised in outdoor scenarios

- Direct line of sight
- No multipath propagation
- d impacts the RSS quadratically
- Other values for the path-loss exponent α possible.
- Path-loss:


$$PL^{FS}(\zeta_i) = \frac{P_{TX}(\zeta_i)}{P_{RX}(\zeta_i)}$$

3

- 4 同 6 4 日 6 4 日 6

3

Aspects of the mobile radio channel

Fading

- Signal quality fluctuating with location and time
- Slow fading
- Fast fading

Slow fading

- Result of environmental changes
- Temporary blocking of signal paths
- Changing reflection angles
- Movement in the environment
 - Trees
 - Cars
 - Opening/closing doors
- Amplitude changes can be modelled by log-normal distribution

톨▶ ◀ 툴▶ 툴 ∽ ९ ↔ Advanced Computer Networks

(日) (同) (三) (三)

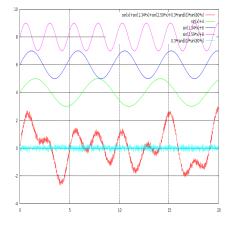
Fast fading

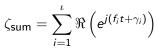
- Signal components of multiple paths
- Cancellation of signal components
- Fading incursions expected in the distance of $\frac{\lambda}{2}$
- Channel quality changes drastically over short distances
- Example: Low radio reception of a car standing in front of a headlight is corrected by small movement
- Stochastic models are utilised to model the probability of fading incursions
 - Rice
 - Rayleigh

- 4 同 6 4 日 6 4 日 6

Security from noise

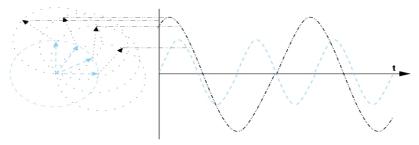
noise Securi

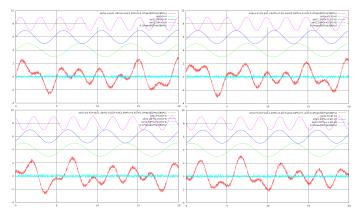

Security from audio PUFs (


Aspects of the mobile radio channel

Superimposition of RF signals

- The wireless medium is a broadcast channel
- Multipath transmission
 - Reflection
 - Diffraction
 - Different path lengths
 - Signal components arrive at different times

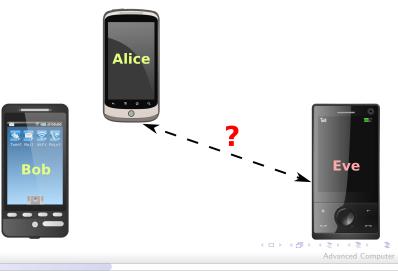

Interference


Advanced Computer Networks

.∃ > . ∢

Superimposition of RF signals

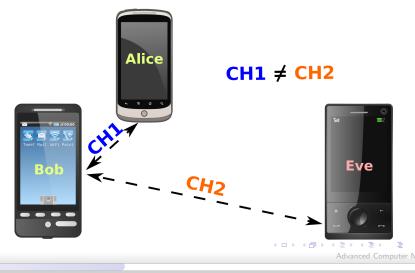
- At a receiver, all incoming signals add up to one superimposed sum signal
- Constructive and destructive interference
- Normally: Heavily distorted sum signal



- Channel conditions are dependent on time and location
- Independent channel conditions typically expected in a distance of $\frac{\lambda}{2}$ (日) (同) (三) (三)

PUFs

With respect to our Motivation:


Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

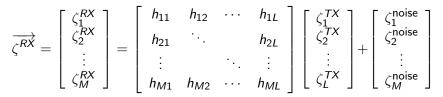
PUFs

With respect to our Motivation:

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

Received signal is defined by the transmitted signal and the applied modifications through the channel(Unique for each link!)

$$r(t) \cdot = s(t) \cdot h(t)$$

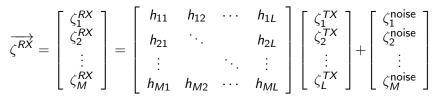

JFs Conclus

Aspects of the mobile radio channel

Received signal is defined by the transmitted signal and the applied modifications through the channel(Unique for each link!)

 $r(t)\cdot = s(t)\cdot h(t)$

General multi-antenna caste:


Fs Conclusi

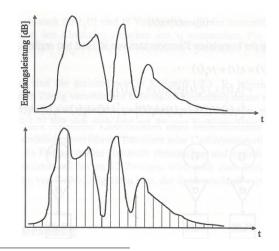
Aspects of the mobile radio channel

Received signal is defined by the transmitted signal and the applied modifications through the channel(Unique for each link!)

 $r(t)\cdot = s(t)\cdot h(t)$

General multi-antenna caste:

Simulation of frequency selective channels


- Common approach: Estimate channel impulse response (CIR) with training bit-sequence
- Correct signal distortions with CIR

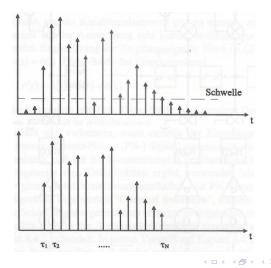
■ ・ ▲ ■ ト ■ つへぐ Advanced Computer Networks

イロト イポト イヨト イヨト

PUFs

Aspects of the mobile radio channel Simulation of frequency selective channels⁴

⁴David, Benkner, Digitale Mobilfunksysteme, Teubner, 1996


Security from noise

noise Security

Security from audio PUFs

Conclusio

Aspects of the mobile radio channel Simulation of frequency selective channels

Advanced Computer Networks

Channel estimation

Approximate h(t) in the time domain:

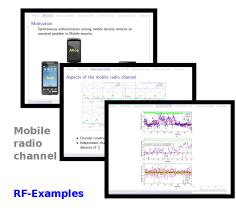
- Send very short impulses
 - Can be improved by using pseudo-noise sequence instead of single identical impulses
- Inverse of estimated CIR $\overline{h(t)^{-1}}$ correlated with received signal:

$$r(t) \cdot \overline{h(t)^{-1}} = s(t) \cdot h(t) \cdot \overline{h(t)^{-1}} \approx s(t)$$

3

(人間) シスヨン スヨン

Security from RF Security from noise Security from audio PUFs

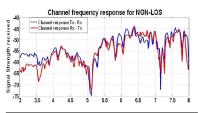

RF-based activity recognition

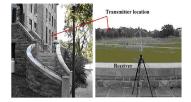
Sensewaves Video

(Radio channel) Revision Motivation

Security from RF Security from noise Security from audio PUFs

Conclusio

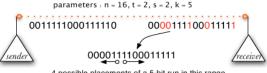

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで


Advanced Computer Networks

Security from RF

Secure communication based on deep fades in the ${\sf SNR}^5$

- Communication partners agree on a threshold value
- Both nodes transmit repeatedly and alternately
- Channel characteristics are transformed to bit sequence
 - Signal envelope below threshold in timeslot: 1, else 0
- No specialised hardware required
 - Only threshold detectors which are already present in transceivers


⁵Azimi-Sadjadi, Kiayias, Mercado, Yener, Robust Key Generation from Signal Envelopes in Wireless Networks, CCS, 2007

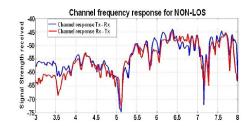
Advanced Computer Networks

Security from RF

Secure communication based on deep fades in the SNR

- Key generation
 - Sender and receiver sample bit sequences
 - Sender transmits key verification information to receiver
 - Receiver decides on correct key by scanning through all possible error vectors

4 possible placements of a 5-bit run in this range

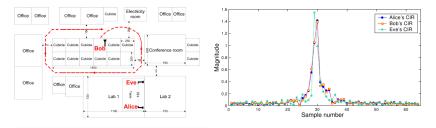

伺 ト イヨト イヨト

- The second sec

Security from RF

Secure communication based on deep fades in the SNR

- Discussion
 - Computationally cheap approach
 - No special hardware required
 - Probably uneven distribution of 0 and 1 (Dependent on 3 Channel characteristics and time slot)
 - 4 Key generation in the presence of noise not optimal

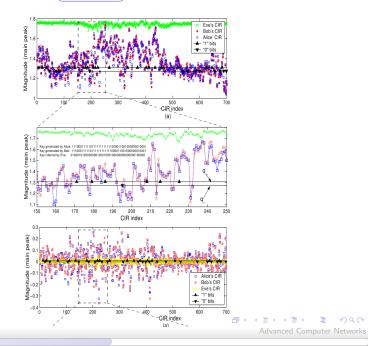


∃→ < ∃→</p>

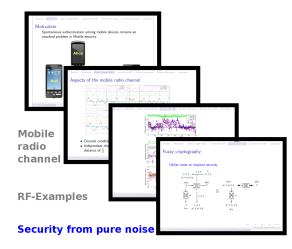
Security from RF

Secure communication based on the CIR⁶ ⁷

- Utilise Channel impulse response as secure secret
 - Utilise magnitude of CIR pain peak
 - Transformed to binary sequence via Threshold
 - Error correction method required in order to account for noise in the binary sequences



⁶Mathur, Trappe, Mandayam, Ye, Reznik, Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel, MobiCom, 2008


¹ Tmar, Hamida, Pierrot, Castelluccia, An adaptive quantisation algorithm for secret key generation using radio channel measurements, NTMS, 2009

Advanced Computer Networks

Conclusio

Security from noise Security from audio PUFs

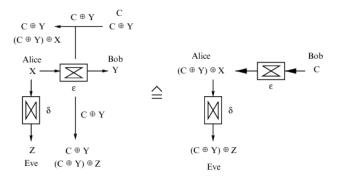
◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Exploit noise for security among devices

- Utilise noise in a common communication channel
- Employ Fuzzy cryptography to mitigate noise for legitimate communication partners

Advanced Computer Networks

3


(Security from noise

Security from audio

PUFs

Security from noise

Utilise noise to improve security

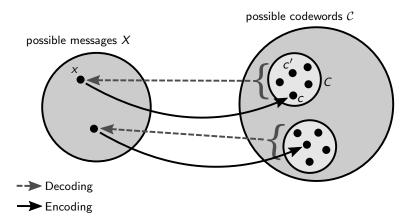
2

・ロト ・回ト ・ヨト ・ヨト

(Security from noise

Security from noise

Utilise noise to improve security

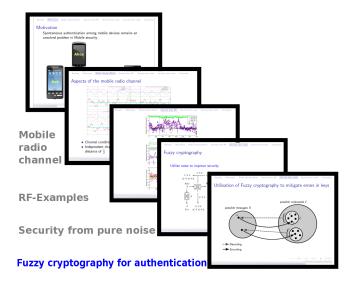


By inverting the direction of communication the noise in Eve's reception is increased above those in Alice's

Establishing of a secure key is possible over binary symmetric channel iff the noise in the reception of Eve's message is higher⁸

⁸ Wyner, The wire-tap channel, Bell system Technical Journal, 54:1355-1387,1975 🗇 🕨 < 🖘 🛛 🛬 🖉 🔍 🔍

Utilisation of Fuzzy cryptography to mitigate errors in keys


Advanced Computer Networks

3

イロト イポト イヨト イヨト

(Security from noise)

Security from audio PUFs

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Fuzzy cryptography

Fuzzy Commitment

Traditional cryptographic systems rely on secret bit-strings.

When key contains errors (e.g. noise or mistake), decryption fails.

Rigid reliance on perfectly matching secret keys makes classical cryptographic systems less practicable in noisy systems.

Fuzzy commitment: cryptographic primitive to handle independent random corruptions of bits in a key.

Advanced Computer Networks

(日) (同) (三) (三)

Fuzzy Commitment

Traditional cryptographic systems rely on secret bit-strings for secure management of data.

A cryptographic commitment scheme is a function

 $G: C \times X \to Y$

To commit a value $\kappa \in C$ a <u>witness</u> $x \in X$ is chosen uniformly at random and $y = G(\kappa, x)$ is computed.

A decommitment function takes y and a witness to obtain the original κ

 $G^{-1}: Y \times X \to C$

≣ ▶ < ≣ ▶ ≣ • ⊃ ९ (∾ Advanced Computer Networks

Traditional Commitment

A well defined commitment scheme shall have two basic properties.

Binding It is infeasible to de-commit y under a pair (κ', x') such that $\kappa \neq \kappa'$

Hiding Given y alone, it is infeasible to compute κ

Advanced Computer Networks

3

イロン 不同 とくほと イロン

Fuzzy Commitment

Fuzzy commitment is an encryption scheme that allows for the use of *approximate* witnesses

Given a commitment $y = G(\kappa, x)$, the system can recover κ from any witness x' that is close to but not necessarily equal to x.

Closeness in fuzzy commitment is measured by Hamming distance.

(日) (同) (三) (三)

Fuzzy Commitment

A fuzzy commitment scheme may be based on any (linear) error-correcting code

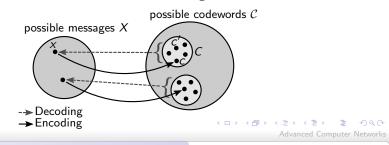
An error-correcting code consists of

Message space $M \subseteq F^a$ (F^i denotes all strings of length *i* from a finite set of symbols F) Codeword space $C \subseteq F^b$ with (b > a) Bijection $\theta : M \leftrightarrow C$ Decoding function $f : C' \rightarrow C \cup \bot$ (The symbol \bot denotes the failure of f) The function f maps an element in C' to its nearest codeword in C.

Advanced Computer Networks

イロト 不得 トイヨト イヨト 二日

Fuzzy Commitment


Noise of physical function may be viewed as the difference $c-c^\prime$

Decoding function f applied to recover original codeword c

This is successful if c' is close to c. In this case: c = f(c')

The minimum distance of the code is the smallest distance d = Ham(c - c') between any two codewords $c, c' \in C$

Typically, it is possible to correct at least $\frac{d}{2}$ errors in a codeword

Fuzzy Commitment

For fuzzy commitment, the secret key κ is chosen uniformly at random from the codeword space C. Then,

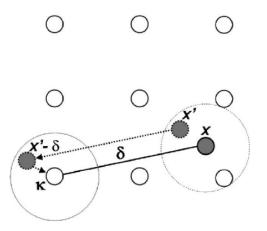
- **1** An offset $\delta = x \kappa$ is computed
- A one-way, collision-resistant hash function is applied to obtain $h(\kappa)$

③
$$y = (\delta, h(\kappa))$$
 is made public

•
$$\kappa' = f(x' - \delta)$$
 is computed

() It is possible to de-commit y under a witness x' with $Ham(x, x') < \frac{d}{2}$

Once κ is recovered, its correctness may be verified by computing $z = h(\kappa)$


3

(Security from noise)

Security from audio PUFs

Fuzzy cryptography

Fuzzy Commitment

(Security from audio) **PUFs**

Radio channel Security from RF Security from noise (Security from audio)

PUFs

Example: Spontaneous audio-based device pairing

・ロン ・回と ・ヨン ・ヨン 2

(Security from audio)

PUFs

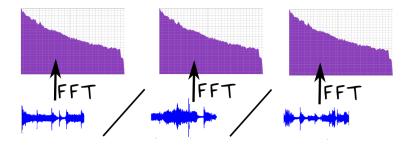
Example: Spontaneous audio-based device pairing

Security from RF Security from noise

(Security from audio)

PUFs

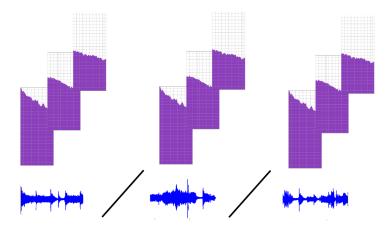
Example: Spontaneous audio-based device pairing

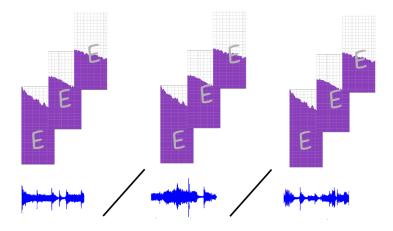


Security from RF Security from noise

(Security from audio)

PUFs

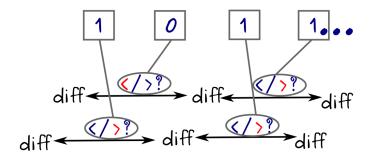

Example: Spontaneous audio-based device pairing



(Security from audio)

PUFs

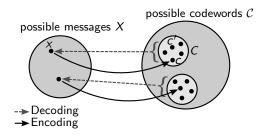
Example: Spontaneous audio-based device pairing


(a)

(Security from audio)

PUFs

Example: Spontaneous audio-based device pairing


E diff E diff - diff diff

Encryption and decryption in the presence of noise

Fuzzy cryptography

- We can, however, utilise error correcting codes to account for errors in an input sequence
- The general idea is to utilise a function that maps from a feature space to another, key space

通 と く ヨ と く ヨ と

Radio channel Security from RF Security from noise (Security from audio)

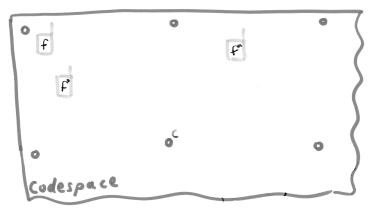
PUFs

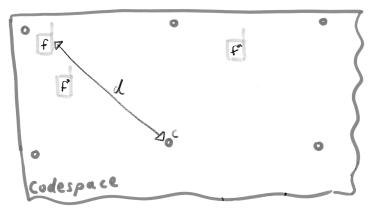
Example: Spontaneous audio-based device pairing

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

F 11017...0110


£ 11011...0110

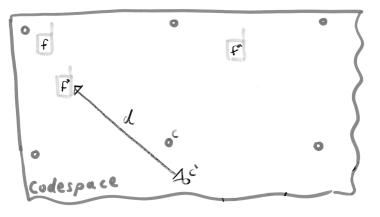

Radio channel Security from RF Security from noise (Security from audio)

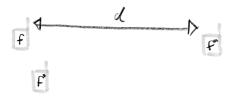

PUFs

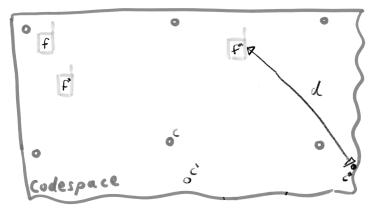
Example: Spontaneous audio-based device pairing

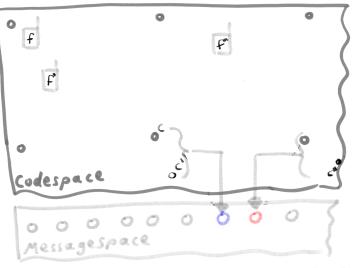
<ロ> <回> <回> <回> < 回> < 回> < 三</p>

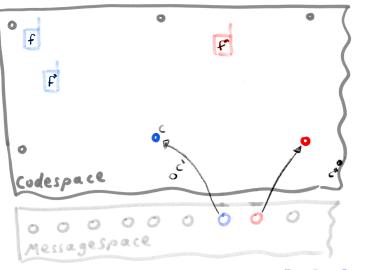
Radio channel Security from RF Security from noise (Security from audio)

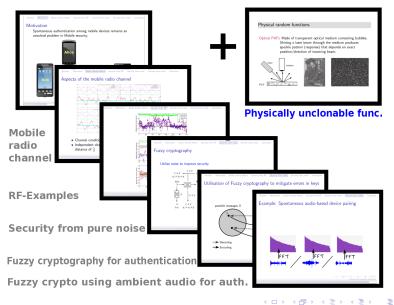

PUFs


Example: Spontaneous audio-based device pairing




<ロ> <回> <回> <回> < 回> < 回> < 三</p>





<ロ> <同> <同> < 回> < 回> 3

(Security from audio)

PUES

Physical random functions

Physical random functions / Physically unclonable functions: Random functions that can only be evaluated with the help of a physical system

Definition

A PUF is a random function that can only be evaluated with the help of a specific physical system. The inputs to a physical random function are challenges and the outputs are responses.

PUES

Physical random functions

Digital PUFs Simplest kind of PUF. Digital key K is embedded in a tamper-proof package along with some logic that computes

$$Response = RF(K, Challenge)$$

for some random function RF

3

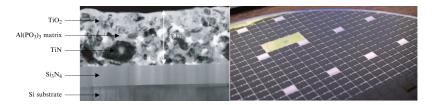
(PUFs)

Conclusio

Physical random functions

Optical PUFs Made of transparent optical medium containing bubbles. Shining a laser beam through the medium produces speckle pattern (response) that depends on exact position/direction of incoming beam.

Advanced Computer Networks


ise Security from audio

(PUFs)

Conclusio

Physical random functions

Silicon PUFs Challenge is an input to a circuit that reconfigures the path that signals follow through the circuit. Response is related to the time it takes for signals to propagate through a complex circuit.

Advanced Computer Networks

▲□→ ▲ □→ ▲ □→

Security from RF Security from noise

Security from audio

PUES

Physical random functions

Security of PUFs relies on difficulty of extracting all necessary parameters from a complex physical system

Attacker trying to extract all physical parameters might modify the PUF in the process

This makes PUFs tamper resistant to some extend

(日) (同) (三) (三)

(PUFs)

Physical random functions

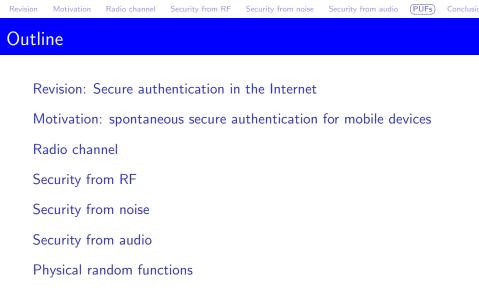
PUF implementations build on random manufacturing variations (bubble position or exact wire delays): Exact behaviour is a mystery even for the manufacturer

Not feasible to create two identical copies of a PUF

A difficulty of optical and silicon PUFs is that their output is noisy

Error correction that does not compromise the security is required⁹

⁹G.E. Suh, C.W. O'Donnell, I. Sachdev, S. Devadas, Design and implementation of the AEGIS single-chip secure processor using physical random functions, Proceedings of the 32nd Annual International Symposium of computer Architecture, 2005


PUEs

Physical random functions

- Standard application: Key-card¹⁰
- Lock stores a database of challenge response pairs (CRPs) for PUF
- When the bearer of the PUF wants to open the lock, it selects a challenges it knows and asks the PUF for the corresponding response
- Each CRP can be used only once : Card will eventually run out of PUFs

¹⁰R. Pappu, Physical One-Way Functions, PhD thesis, MIT, 2001

Conclusion

・ロト・日本・モト・モト・モー かくぐ

Advanced Computer Networks

noise Security from audio

PUFs Cor

Controlled Physical random functions

Definition Controlled physical random function (CPUF): PUF that can only be accessed through specific API

Main problem with uncontrolled PUFs: Anybody can query the PUF for the response to any challenge

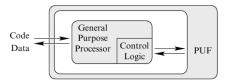
In order to engage in cryptography with a PUF device, a user has to exploit the fact that only he and the device know the response to a specific challenge.

イロト イポト イヨト イヨト

Security from noise

Security from audio

Conclusi

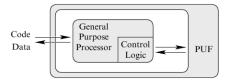

PUES

Controlled Physical random functions

Third party could try to overhear challenge, obtain response from PUF and spoof the device

Problem: Adversary can freely query the PUF

By using CPUFs, Access to PUF restricted by control algorithm that prevents this attack


Embedding control logic for PUF in physical system of PUF makes it difficult to conduct invasive attacks on the control logic

Controlled Physical random functions

Security from RF

Radio channel

Motivation

Security from noise

Security from audio

イロト イポト イヨト イヨト

PUFs

The PUF and its control logic have <u>complementary roles</u> The PUF protects the control logic from invasive attacks The control logic protects the PUF from protocol attacks

Security from noise

Security from audio

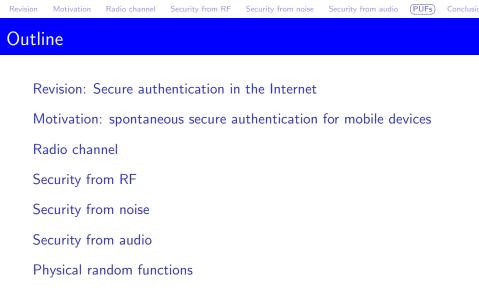
(PUFs) Conclus

Controlled Physical random functions

Applications for CPUFs

Applications for CPUFs include applications that require single symmetric key on a chip

• Smartcards that implement authentication:


<u>Current smart-cards</u>: Hidden digital keys can be extracted using various attacks

<u>PUF on the smartcard</u>: Can authenticate chip – Digital key not required (Smartcard hardware itself is the secret key)

Key can not be duplicated: Person that temporary looses control of card need not fear that an adversary might have cloned the card or that the security became somehow impaired.

3

・ロト ・回ト ・ヨト ・ヨト

Conclusion

Advanced Computer Networks

3

イロト イポト イヨト イヨト

CPUF typically modelled as general-purpose processing element with access to a $\ensuremath{\mathsf{PUF}}$

Man-in-the-Middle Attack:

Adversary intercepts communication to device wants Alice to accept incorrect result as coming from device

3

Alice would execute the following protocol

Alice would execute the following protocol

- Pick one CRP (Char, Response) at random
- Execute the following function on the PUF:
 - 1: GetAuthenticBroken(Chal){
 - 2: my Resp = PUF(Chal);
 - 3: // Do some computation, produce result

```
4: return (Result, MAC(Result, Resp));
```

- 5: }
- Use the MAC and Response to check that the data is authentic

Protocol is not secure against Man-in-the-Middle attacks

Attacker could

- Intercept message send to GetAuthenticBroken and extract Chal
- ② Execute on the PUF:
 - 1: StealResponse(Chal){

```
2: return (PUF(Chal));
```

- 3: }
- Sorward Alice the message MAC(FakeResult, Response)
- Since the MAC was computed with the correct response, Alice accepts FakeResult

<u>Problem:</u> When Alice releases her challenge, Adversary can ask PUF for corresponding response and impersonate PUF

Problem persists as long as the PUF freely provides responses

3

イロン 不同 とくほう イヨン

GetSecret

To solve this problem: PUF shall only be accessed via call GetSecret(Chal)=Hash(PHashReg, PUF(Chal))

PUF reveals combination of response and executed program instead of response

Since the Hash is a one-way function: Response not recovered easily

≣ ▶ ◀ ≣ ▶ ≣ ∽ ९ ० Advanced Computer Networks

イロト イポト イヨト イヨト

GetSecret

We alter the call of Alice accordingly:

- 1: GetAuthenticBroken(Chal){
- 2: hashblock()({// HB
- 3: // Do some computation, produce result

<ロ> <同> <同> < 回> < 回>

- 4: });
- 5: my Secret = GetSecret(Chal);
- 6: return (Result, MAC(Result, Secret));
- 7: }

GetSecret

Alice can now compute Secret from Response by computing Hash(PHash(HB), Response) to check the MAC

An adversary has no way of obtaining Secret

3

イロン 不同 とくほう イヨン

GetCRP

However, the solution presented may be too restrictive for Alice also

With no CRP:

No way for Alice to obtain one in the first place: Device never reveals response

Possible solution: Primitive called GetCRP that

- Picks a random challenge
- Omputes the response
- Returns the response to the caller

When space of challenges large enough:

Unlikely that attacker can compute CRPs identical to Alice's

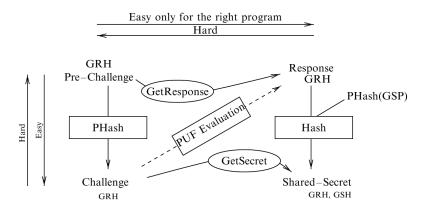
3

(B)

< 17 >

GetResponse

Problem: Random number generators often vulnerable to attacks


<u>Therefore:</u> Might prefer alternative that not relies on a RNG that much

Replace GetCRP by GetResponse()=PUF(PHashReg)

<u>Now:</u> Anybody can generate CRP (PHashReg,GetResponse()) <u>But:</u> Due to hash function, nobody can generate specific CRP

GetResponse

돌▶ < 둘▶ 둘 ∽ Q (~ Advanced Computer Networks

<ロ> <同> <同> < 回> < 回>

GetResponse

Man-in-the-Middle attack is prevented since each user has his own CRPs

Challenges can be public, but responses are required to be private

When not told the secret and GSH not leaks information, adversary can only obtain secret by hashing appropriate response

No way for adversary to obtain this response

Therefore:

Man-in-the-Middle attacks are prevented since PUF accessed only through GetSecret and GetResponse.

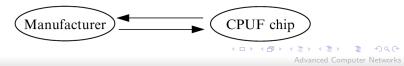
イロト イポト イヨト イヨト

Challenge response pair management

How to get the response to the legitimate user? The following sequence is proposed for CRP management

- After manufacturing manufacturer gets device-CRP with Bootstrap
- Manufacturer uses Introduction to provide CRPs to certification authorities
- Certification authorities provide CRPs to end users
- Anybody in possession of a CRP can create new CRPs by Renew

イロト イポト イヨト イヨト


Bootstrapping

- Pick a pre-challenge PreChal at random
- 2 Execute

```
    Bootstrap(PreChal){
    hashblock(PreChal)({
    Return GetResponse();
    });
    }
```

The challenge for the CRP is obtained by calculating PHash(HB)

If PreChal is not known, the security relies on the hash function

Renewal

- Pick a pre-challenge PreChal at random
- Ø By using an old challenge OldChal, execute

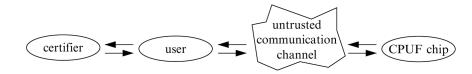
```
1: Renew(OldChal, PreChal){
2: hashblock(OldChal, PreChal)({
3: my NewResponse = GetResponse();
4: my Secret = GetSecret(OldChal);
5: return Encrypt(NewResponse,
Secret);//Key:Secret
6: });
```

- 7: }
- Compute Hash(PHash(HB), OldResponse) to calculate Secret, check the MAC with it and retrieve NewResponse

Advanced Computer Networks

Renewal

When the response corresponding to OldChal is only known to the user, the method is secure.



Introduction Provide user with CRP

Assumption:

Trusted channel between user and certifier

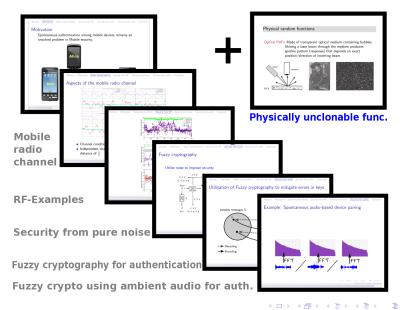
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のへの

Advanced Computer Networks

Introduction

- Cert. authority picks (OldChal, OldResponse), computes Secret=Hash(PHash(HB), OldResponse) and returns (OldChal, Secret)
- Oser picks pre-challenge PreChal at random and executes

```
1: Introduction(OldChal, PubKey, PreChal){
              hashblock(PubKey, PreChal)({
    2:
    3:
                     my NewResponse = GetResponse();
    4:
                     my Message = PublicEncrypt(NewResponse,
      PubKey);
    5:
                     my Secret' = GetSecret(OldChal);
    6:
                     Return (Message, MAC(Message, Secret'));
    7:
              });
    8: }
User checks MAC with Secret. (Secret=Secret' since both are
   computed as Hash(PHash(HB), OldResponse)). User Decrypts Message
```


and computes PHash(HB) to obtain Response and Challenge

Advanced Computer Networks

Security from audio

PUFs

PUFs

Questions?

Stephan Sigg stephan.sigg@cs.uni-goettingen.de

Advanced Computer Networks

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data On private biometrics, secure key storage and anti-counterfeiting, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

(日) (同) (三) (