WORKS

Transport Layer — Part |

Computer Networks, Winter 2011/2012

WORKS



WORKS

Chapter 4: The Transport Layer

5: Application Layer

4: Transport Layer

3: Network Layer

2: Link Layer

[ 1: Physical Layer

Transport Layer

3-2



Chapter 4: The Transport Layer

QOur goals:

o understand principles o learn about transport layer
behind transport layer protocols in the Internet:
services: o UDP: connectionless transport

o multiplexing/demultiplex o TCP: connection-oriented
ing transport
o reliable data transfer o TCP congestion control

o flow control
o congestion control

WoRks Transport Layer

3-3



NET
WORKS

Transport Layer

@)

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure
o reliable data transfer
o flow control
o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer

3-4



Transport services and protocols

application
transport

physical

o provide logical communication
between app processes running
on different hosts

o transport protocols run in end
systems

o send side: breaks app
messages into segments,
passes to network layer

o rcv side: reassembles
segments into messages,
passes to app layer

o more than one transport protocol
available to apps

o Internet: TCP and UDP

WORKS

Transport Layer

Bz,

transport

3-5




Transport vs. network layer

o network layer: logical o transport layer: logical
communication between communication between
hosts processes

o relies on & enhances,
network layer services

WoRks Transport Layer

3-6



s
/

Transport Protocol: Analogy

Company M

CEO

Chairman

ﬁfﬁfﬁf

Steve

Bill

1

Secretary M

]

Post man M

X

Transporter driver

CEO = Chief Executive Officer
CSA = Chief Software Architect
TP = Technology President

PP = Products President

Company G

>=>0
>=>0

Eric Sergey

)

Secretary G

]

Post man G

X

Transporter driver

Transport Layer

Larry

- S o e s S e D e e M e e e e e e

3-7



/ CEO Chairman CSA \

Transport Protocol: Analogy

Company M

CEO = Chief Executive Officer

\ CSA = Chief Software Architect
| TP = Technology President
g PP = Products President
|
|
Steve Bill I
|
/] '
|
|
Secretary M |
|
|
'
|
Post man M I
|
|
I -
_ | ———— -
Transporter driver | == =

S I IS S S B B B B B B B B B S B B B By

Company G

Sergey Eric Larry

2

\
|
|
|
|
|
|
|
|
Secretary G |
|
|
|
|
|
|
|
|
|
|

= 1

Post man G

X

Transporter driver

Transport Layer 3-8



Transport Protocol: Analogy

o Postal service (Network o Secretary service

Layer): logical (Transport Layer): logical
communication between communication between
company buildings. employees of G und M.

o relies on & enhances,
postal services

WOR K Transport Layer

3-9



I
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

WORKS

Transport Protocol: Analogy

Company

Secretary % N/]

Post man %
Lorry driver % .

- S o e S e e D e e M e e e e e e e

- . S S S S S S e e e .y,

5: App. Layer (processes)

4: Transport Layer (protocols)

3: Network Layer (protocol)

2: Link Layer (protocols)

1: Physical Layer (medium)

Transport Layer

—_ea e s e e o o o e e e e e e e .

3-10



Internet transport-layer protocols

transport
networ
. data link
o unreliable, unordered physical
delivery: UDP T~
: : " ~ whwine
o nho-frills extension of “best-
effort” IP
o reliable, in-order delivery <

(TCP) ig%
o congestion control

o flow control
o connection setup

o services not available:
o delay guarantees
o bandwidth guarantees

WORKS

data link

physical

network

data link

physical

I application
network transport

data link 3 networ
physical data link

physical

Transport Layer  3-11



EXcUursus: Sockets

Socket API

WORKS

introduced in BSD4.1 UNIX, 1981
explicitly created, used, released
by apps

client/server paradigm

two types of transport service
via socket API:

o unreliable datagram

o reliable, byte stream-
oriented

— socket

a host-local,
application-created,
OS-controlled interface (a
“door”) into which
application process can both
send and
receive messages to/from
another application process

Transport Layer

3-12



EXcursus: Socket programming with TCP

Socket: a door between application process and end-end-

transport protocol (UDP or TCP)

TCP service: reliable transfer of bytes from one process to

another

controlled by ,
application
developer ¥

A

controlled by
operating
system

A 4

WORKS

£( [N

Process

TCP with
buffers,
variables

host or
server

Internet

>

= socket &

£( [N

process

TCP with
buffers,

variables

host or
server

controlled by
application
developer

controlled by
operating
system

Transport Layer

3-13



EXCUrsus: Socket programming with TCP

Client must contact server

©)

server process must first be
running

server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

©)

©)

WORKS

creating client-local TCP socket

specifying IP address, port
number of server process

When client creates socket:
client TCP establishes
connection to server TCP

o When contacted by client, server
TCP creates new socket for
server process to communicate
with client

o allows server to talk with
multiple clients

o source port numbers used to
distinguish clients

- application viewpoint
TCP provides reliable, in-order

transfer of bytes (“pipe”’)
between client and server

Transport Layer

3-14



WORKS

Transport Layer

@)

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure
o reliable data transfer
o flow control
o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer

3-15



Multiplexing/demultiplexing

_ Multiplexing at send host:

__ Demultiplexing at rcv host:

gathering data from multiple sockets,
enveloping data with header
(later used for demultiplexing)

delivering received segments
to correct socket

B =socket D =process

application @ application application
1025 1025 1026 1026 |
transport transport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

WOoRkg Transport Layer  3-16



How demultiplexing works

o host receives IP datagrams

o each datagram has source IP

address, destination IP
address

o each datagram carries 1
transport-layer segment

o each segment has source,
destination port number

o host uses IP addresses & port
numbers to direct segment to
appropriate socket

WORKS

g 32 bits —

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer  3-17



WORKS

Connectionless demultiplexing

o When host receives UDP
segment:

o checks destination port
number in segment

o Create sockets with port
numbers:

DatagramSocket clientSocket =

o directs UDP segment to
new DatagramSocket () ;

socket with that port

number
DatagramSocket serverSocket = _ .
new DatagramSocket (6428) ; o IP datagrams with different
source |IP addresses and/or
o UDP socket identified by two- source port numbers
tuple: directed to same socket

(dest IP address, dest port number)

Transport Layer  3-18



Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428) ;
5 l SP provides
“return
address”
SP: 6428
server DP: 5775 Client
IP: C IP:B
SP: 5775
DP: 6428

WOoRkg Transport Layer  3-19



Connection-oriented demux

o TCP socket identified by 4-
tuple:
o source IP address
o source port number
o dest IP address
o dest port number

o recv host uses all four
values to direct segment to
appropriate socket

WORKS

o Server host may support

@)

many simultaneous TCP
sockets:

o each socket identified by its
own 4-tuple

Web servers have different
sockets for each connecting
client

Transport Layer  3-20



Connection-oriented demux (cont)

client
IP: A

SP:9157] !

DP: 80

S-1P: A

D-IP:C

WORKS

server Client
IP: C IP:B
PHCPSLPE
i I L
A A
SP: 5775
DP: 80
S-IP: B
D-IP:C
v
7
SP: 9157
DP: 80
S-IP: B
D-I1P:C Transport Layer

3-21



Connection-oriented demux (cont)

client
IP: A

SP:9157

DP: 80

S-1P: A

D-IP:C

WORKS

server Client
IP: C IP:B
| — —
SP: 5775
DP: 80
S-1P: B
D-IP:C
v
~
SP: 9157
DP: 80
S-1P: B
D-I1P:C Transport Layer

3-22



WORKS

Transport Layer

@)

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure
o reliable data transfer
o flow control
o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer

3-23



NET
WORKS

The Problem with TCP

o TCP offers a reliable
and easy to use
transport protocol to
programmers.

o Congestion control
o Retransmissions etc.

o However congestion
control imposes
transmission-rate
constraints.

o If a traffic jam is
detected on a path,
sender decreases
sending rate
“dramatically”.

o Problem: One cannot
“switch” off functions
of TCP ex. Congestion
control.

Transport Layer

3-24



UDP: User Datagram Protocol [RFC 768]

o “nofrills,” “bare bones”

Internet transport prOtOCOI Why |S there a UDP?

o “best effort” service, UDP
segments may be:

o no connection establishment
(which can add delay)

o lost o simple: no connection state

o delivered out of order to (buffers & parameters) at
app sender, receiver

o connectionless: o small segment header (8 bytes

o no handshaking between v.s. 20 bytes)
UDP sender, receiver o no congestion control &

o each UDP segment handled retransmission: UDP can blast
independently of others away as fast as desired (e.g.

used by VOIP)

WOoRkg Transport Layer  3-25



UDP: more

o often used for streaming

multimedia apps ) 32 bits =
o loss tolerant Length, in | SOUrce port # dest port #
o rate sensitive bytes of UDP [~ length checksum
o other UDP uses .i]ecﬁe.ﬂg Application
o DNS header data
o SNMP (message)
o reliable transfer over UDP: add ex.
reliability at application layer - DNS query
o application-specific error - audio sample
recovery!
o ex. ACK/NAK, UDP segment format

retransmissions (non-
trivial).

WOoRkg Transport Layer  3-26



NET
WORKS

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender:

©)

treat segment contents as
sequence of 16-bit integers

checksum: addition (1’s
complement sum) of segment
contents

sender puts checksum value
into UDP checksum field

Receiver:

o compute checksum of received
segment

o check if computed checksum
equals checksum field value:

o NO - error detected

o YES - no error detected. But
maybe errors nonetheless?
More later ....

Transport Layer  3-27



UPD checksum example

o Lets take the word o UDP checksum works
“hi” (8bit ASCII) with 16 Bit words, but
o Convert it to binary we use 8 Bits for
- h=01101000 simplicity
o 1=01101001

s N

The 1s complement is

o Add both words obtained by inverting

01101000 (h) . v
+ 01101001 (i) ones to zeros and vice
11010001 (h+i) Versa.

{ 11010001 -> 00101110 (checksum)/

E-T
\'F'VORKS Transport Layer  3-28



UPD checksum example

o Check (unaltered bits):

01101000 (h)

+ 01101001 (i)
11010001 (h+i)

+ 00101110 (checksum)
11111111 (OK)

o Check (altered bits):

01101000 (h)

+01101011 (i)
11010011 (h+i)

+ 00101110 (checksum)
100000001 (NOK!)

WORKS

UDP segment
< 32 bits —>

source port # dest port #
length 00101110
01101000 01101001
(h) (1)

Transport Layer  3-29



NET
WORKS

UDP checksum

o Why error detection
in the first place?

o Link Layer provides
CRC! (Ethernet)

o No guarantee for:
o link-to-link reliability (e.g.
non ethernet)

o memory error detection on
routers

o IPis designed to run
on any layer 2

protocol (ethernet,
PPP, 802.11, 802.16).

o End-to-end error
detection is safety
measure

o UPD does not recover
from errors
(discard/warning)

Transport Layer

3-30



WORKS

Transport Layer

@)

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure
o reliable data transfer
o flow control
o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer

3-31



Principles of Reliable data transfer

o importantin app., transport, link layers
o top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable Chcmnel)j

application
layer

fransport
layer

(a) provided service

o characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

WOoRkg Transport Layer  3-32



Principles of Reliable data transfer

o importantin app., transport, link layers
o top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

application
layer

transport
layer

L 2
Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

o characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

NET
WORKS

Transport Layer  3-33



Principles of Reliable data transfer

o importantin app., transport, link layers
o top-10 list of important networking topics!

-
O
O O
QO g senalngl receiver I
8 —= process process
g | 1
dt send -
= L()relioble c:hcmnel)j rdt_send() deliver data()
8_ 5 reliable data reliable data
@ > fransfer protocol transfer protocol
% O (sending side) (receiving side)
+ udt_ send ( )i [packet | [ packet| Irdt rev()

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

o characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

E-T
‘I;IVORKS Transport Layer  3-34



Reliable data transfer: getting started

rdt send () : called from above, deliver data/() : called by
(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /

\ rdt_send() data Tdeliver_data ()

send [relidble data reliable data receive
side fransfer protocol transfer protocol id
(sending side) (receiving side) SI0E
udt send ( )i packet packet Irdt rcv ()
T—»()unrelicible channel )<T
udt send () : called by rdt, rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel
unreliable channel to receiver

E-T
\'fVoRKS Transport Layer  3-35



WORKS

Reliable data transfer: getting started

we’'ll;

@)

incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

consider only unidirectional data transfer

o but control info will flow on both directions!

use finite state machines (FSM) to specify sender,
receiver

Use generic term “packet” rather than “segment”

Transport Layer

3-36



Finite State Machine

o FSM is a model of behavior composed of a finite
number of
o States
o transitions between states on events
o actions taken upon events

o Necessary to define the behavior of our protocol,
prior to implementation

event causing state transition
actions taken on state transition

@/ \

WoRks Transport Layer

3-37



Rdt1.0: reliable transfer over a reliable channel

o Assumption: underlying channel perfectly reliable
o ho bit errors
o no loss of packets

o separate FSMs for sender, receiver:
o sender sends data into underlying channel
o receiver read data from underlying channel

o We will first look at an analogy with the secretary
then the state machines.

WOoRkg Transport Layer  3-38



Rdt1.0: reliable transfer over a reliable channel (Analogy)

o The secretary from
our previous example —
Waiting
has one state / for tasks

from above

o He waits for tasks Seczw
from his boss

o Task is sending letters

WOoRkg Transport Layer  3-39



Rdt1.0: reliable transfer over a reliable channel (Analogy)

Sender
Task from Bill:
send letter
Action:
) Put letter in envelope
Bill = Give letter to Postman
Secretary M

]

Post man M

—_— -

~N—_—_— e ————

\'?'\fd}a‘,(ss Transport Layer  3-40



Rdt1.0: reliable transfer over a reliable channel (Analogy)

Waiting
for tasks
from above
o The secretary goes ji

back to his state, Secretary M
waiting for more
tasks.

WO R Transport Layer — 3-41



Rdt1.0: reliable transfer over a reliable channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

packet =

/' Wait for
call from
above
make_pkt(data)
udt_send(packet)

sender receiver

_______________

WoRks Transport Layer  3-42



WORKS

Rdt2.0: channel with bit errors

o underlying channel may flip bits in packet
o checksum to detect bit errors [00101110 ]

o the question: how to recover from errors?

o Analogy:
o Imagine you dictate phone number over cell phone to friend.
o Bad reception may scramble your voice.

B 0176 R -
A oK L]
ji 1234 %

_ Not OK, repeat please

You 1234 Friend

OK

Transport Layer  3-43



WORKS

Rdt2.0: channel with bit errors

o acknowledgements (ACKs): receiver explicitly tells
sender that pkt received OK

o negative acknowledgements (NAKs): receiver
explicitly tells sender that pkt had errors

o sender retransmits pkt on receipt of NAK
o new mechanismsin rdt2.0 (beyond rdt1.0):

o error detection
o receiver feedback: control msgs (ACK,NAK) rcvr->sender

o Automatic Repeat reQuest type of protocol (ARQ)

Transport Layer  3-44



rdt2.0: Fsm specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

—_—_————e—eee e — —

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver _data(data)
udt_send(ACK)

Transport Layer

3-45



rdt2.0 has a fatal flaw!

What happens if ACK/NAK

corrupted?

sender doesn’t know what
happened at receiver!

can’t just retransmit: possible
duplicate

Handling duplicates:

©)

WORKS

sender retransmits current pkt
if ACK/NAK garbled

sender adds sequence number
to each pkt

receiver discards (doesn’t
deliver up) duplicate pkt

Using only ACK + Sequence:

©)

We can discard NAK packets,
by using only ACK + Seq.#

duplicate ACK at sender results
in same action as NAK:
retransmit current pkt

—stop and wait

Sender sends one packet,
then waits for receiver

response

Transport Layer

3-46



rdt2.2: sender, handles garbled ACKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
udt_send(sndpkt)

Wait for
ACK or
NAK O

Wait for
call O f.
above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt,1)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,0)

A A
Wait for
call 1 1.
rdt_rcv(rcvpkt) && above
( corrupt(rcvpkt) ||
iSACK (rcvpkt,0) ) rdt_send(data) S -
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum) :( teve?’t'f*transi.“on
- Udt_Send(Sndpkt) : ransition — action
|
\

—_—_————eeeee e —

E-T
‘?IVORKS Transport Layer  3-47



rdt2.2: receiver, handles garbled ACKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK,0, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has seqO(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seql(rcvpkt)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)

(

|
deliver_data(data) i transition — action
sndpkt = make_pkt(ACK, 1,chksum) | A =no eventaction
udt_send(sndpkt) S /

E-T
\'F'VORKS Transport Layer  3-48



NET
WORKS

rdt2.2: discussion

Sender:

o seq # added to pkt
o twoseq. #s (0,1) will
suffice. Why?

o must check if received
ACK corrupted

o twice as many states

o state must “remember”
whether “current” pkt has
Oorlseq.#

Receiver:

O

must check if received
packet is duplicate

o state indicates whether O
or 1 is expected pkt seq #

note: receiver can not
know if its last ACK
received OK at sender

Transport Layer

3-49



WORKS

rdt: What do we have so far?

o rdt 1.0

o simple transfer over reliable channel (unrealistic)

o rdt 2.0

o bit error prone channel (more realistic)
o checksum (data), ACK/NAK, retransmit
o but what if ACK corrupt?

o rdt 2.2

o checksum (data & ACK)

o retransmit if ACK corrupt

o but what if data OK, but ACK corrupt? -> duplicate
o introduce sequence numbers (more states)

o slimed down: discard NAK by introducing seq. in ACK
o but what if channel looses packets?

) (L)
(I (S

Transport Layer

3-50



rdt3.0: channels with errors and loss

New assumption: underlying  Approach: sender waits

channel can also lose “reasonable” amount of
packets (data or ACKs) time for ACK
o checksum, seq. #, ACKs, o retransmits if no ACK received in
retransmissions will be of this time

help, but not enough o if pkt (or ACK) just delayed (not

lost):

o retransmission will be
duplicate, but use of seq. #'s
already handles this

o receiver must specify seq # of
pkt being ACKed

o requires countdown timer

Transport Layer  3-51



rdt3.0 sender

rdt_send(data)

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)

\ start_timer

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISACK(rcvpkt, 1))

A

—

Wait for
call Ofrom
above

—_—_———— e —— —

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

Transport Layer

3-52



rdt3.0 in action

sender receiver
okt
send pki0 \0‘ eV pki0
send ACKO
ov ACKO /

ACK
send pkt1 \K
rcv pkil
ACK send ACK
rcVACKT
CK

send pktO kt 0
A rcv pktO
send ACKO

(a) operation with no loss

WORKS

sender receiver
okt
sendplt0 =0 oy pkio
ACK send ACKO

rcv ACKO

send pkil 7 \%A(
(loss)

timeout  _|
resend pkit1 %
rcv pkil
ACK send ACKI1
rcvACK] o
send pki0

rcv pkio
}G/ send ACKO

(b) lost packet

Transport Layer  3-53



rdt3.0 in action

sender receiver sender receiver
ok kt
send piio &’ rcv pki0 send pki0 \k} rcv pkio
ACK send ACKO ACK send ACKO
rcv ACKO _ rcv ACKO _
send pkt1 Pk send pkil
rcv pktl rCcv kil
ACK send ACK1 send ACK1
(loss) Xl)/
timeout
fimeout = ok resend pkil -
resend pktl \rcv okt 1 rcv pktl
ACK (detect duplicate) rcvACK (detect duplicate)
ACK] send ACKI] send pkio send ACK1
0 send ACKO
ACK Ve ACK
send ACKO
(c) lost ACK (d) premature timeout

WOoRkg Transport Layer  3-54



NET
WORKS

Performance of rdt3.0

o rdt3.0 works, but performance stinks
o ex:1Gbpslink, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
— = = 8microseconds

trans — o 10°bps

O U 4 Utilization — fraction of time sender busy sending

L/R .008
U — = — = 0.00027
sender  pYT+L/R 30.008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

Transport Layer

3-55



rdt3.0: stop-and-wai

sen

first packet bit transmitted, t = 0

last packet bit transmitted, t =L/ R 17

RTT

ACK arrives, send next|

<«

packet, t =RTT+L/R

U

t operation

der receiver

first packet bit arrives
—last packet bit arrives, send ACK

L/R 008

WORKS

sender RTT+L/R  30.008

= 0.00027

Transport Layer  3-56



Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased
o buffering at sender and/or receiver

data pqcke’r—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

o Two generic forms of pipelined protocols: go-Back-N, selective
repeat

WOoRkg Transport Layer  3-57



Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fge------------ooooee
last bit transmitted, t=L/R

first packet bit arrives
last packet bit arrives, send ACK

— last bit of 2"d packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT +L/R |

Increase utilization

. v by a factor of 3!
* .024 ‘/
U = 3*L/R = = 0.0008

sender  pTT . L/R ~30.008

\'?'vkd);_}(\s Transport Layer ~ 3-58



WORKS

Pipelining Protocols

Go-back-N: big picture:

o Sender can have upto N
unacked packets in
pipeline

o Rcvr only sends
cumulative acks

o Doesn’t ack packet if
there’s a gap

o Sender has timer for
oldest unacked packet

o If timer expires, retransmit
all unacked packets

Selective Repeat: big pic

o Sender can have up to N
unacked packets in
pipeline

o Rcvr acks individual
packets

o Sender maintains timer
for each unacked packet

o When timer expires,
retransmit only unack
packet

Transport Layer

3-59



WORKS

Go-Back-N (GBN) Demonstration
o Protocol Demo ( )

o http://media.pearsoncmg.com/aw/aw_kurose net
work_2/applets/go-back-n/go-back-n.html

Transport Layer

3-60


http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/go-back-n/go-back-n.html

Transport Layer I: Summary

o principles behind transport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer Next:
o flow control

o congestion control

o instantiation and
implementation in the
Internet

o UDP
o TCP

WOoRkg Transport Layer  3-61



WORKS

Thank you

Any questions?

Transport Layer

3-62



