
Practical Data Science:
The Python Stack

Dr. David Koll

Organizational Stuff

 Room change is permanent: we will stay in this room (2.101)!

Module: can be accredited for in Data Science study specialization (via
special accreditation)
 In subsequent semesters, we will have a new module specially designed for this

Recap: The DS Pipeline

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

?

???

Tools

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

General Advice

 For beginners:
 Getting to know one stack in detail is preferable over superficial ‘distributed’

knowledge

 You can likely do anything you want to do (now) in every major stack

 Differences are relatively minor in the beginning

 Some languages are easier to learn than others

 For advanced data scientists (or for competitions):
 Some algorithmic libraries are slightly more powerful than others

 Some visualization libraries allow more expressiveness than others

 Some tools are more convenient to use than others

First step: Picking a Language

http://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-software-leaders.html

First step: Picking a Language

http://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-software-leaders.html

Why Python in this Course?

Number one programming language in Data Science (according to KDN)

 Easier to learn than R, especially with CS background

 Anaconda offers easy package handling

 If you want to use something else, please feel free to do so

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

More Python libraries and tools: http://www.pydata.org

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

DS Environment Manager: Anaconda

 Anaconda is a Python distribution, featuring:
 Package manager

 720 open source packages, largely related to data science

 (Virtual) Environment manager

Makes DS projects easier to handle:
 Can have a different environment (e.g., Python 2 vs Python 3) for different projects

 Also allows for different versions of a particular package

 Each (virtual) environment can have different packages installed
 Some DS packages do have interfering dependencies

 Can import pre-defined images (e.g., Kaggle image for competitive data science)

Anaconda: Navigator

Anaconda: Navigator

Anaconda: Navigator

 Contrary to pip, conda installs from binaries (easier especially on Windows)

 General advice: try to conda install first, only run pip if conda fails

Anaconda: Navigator

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

Jupyter Notebook

 Jupyer Notebook is a web-service tool well suited for DS:

 All the projects in this course can be done exclusively in Jupyter Notebooks

 Similar tool in R available since 12/2016: R Notebooks
 However: Jupyter allows 40 different languages (including R), Spark integration etc.

 See: https://try.jupyter.org/

“The Jupyter Notebook is an open-source web
application that allows you to create and share
documents that contain live code, equations,
visualizations and explanatory text. Uses
include: data cleaning and transformation,
numerical simulation, statistical modeling,
machine learning and much more.”

- http://jupyter.org/

Jupyter Notebook

Jupyter Notebook

Jupyter Notebook

Jupyter Notebook

Textual Information: Markdown

Markdown is a very simple text formatting syntax
 Can easily build headings, tables, lists, formulas

Textual Information: Markdown

Markdown cheat sheets:
 https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

 https://github.com/cben/mathdown/wiki/math-in-markdown

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/cben/mathdown/wiki/math-in-markdown

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

Data Wrangling & Analysis: Pandas

 Pandas is the go-to library for handling (and analyzing) your data
 Built on top of NumPy, a fundamental scientific computing package for python

Offers functionality to…
 read data

 organize data in table-like data structures (dataframes)

 manipulate data(frames)

 aggregate statistics about data

 and more

…in a very fast and efficient way

NumPy in a Nutshell

NumPy offers ndarray:
 Object to encapsulate n-dimensional arrays

 Difference to standard python datastructures
 Needs homogeneous data

 Fixed size at initialization

 More efficient handling of larger data due to using pre-compiled C code

Most important for data wrangling: vectorization and broadcasting
 Vectorization avoids any (slow) loops

 Broadcasting allows element-by-element operations

NumPy Examples

 Vectorization:

 Broadcasting:

 Both yield an equivalent result, b is stretched on the right

 But: right side is 10% faster as it moves less memory

c = []
for i in range(len(a)):

c.append(a[i] * b[i])

c = a*b

Standard Python Numpy

a = np.array([1.0, 2.0, 3.0])
b = np.array([2.0, 2.0, 2.0])
a*b

a = np.array([1.0, 2.0, 3.0])
b = 2.0
a*b

Pandas

 In most projects, pandas is the first library you will use

 Example: read in .csv data

 creates a pandas DataFrame (df), *the* data structure of pandas

 df can then be manipulated further

When reading data, pandas offers integrated handling of data alignment
and missing data

import pandas as pd

df = pd.read_csv(`example_data.csv‘)

Pandas Data Structures

 Besides DataFrames, pandas offers Series:
 1d-array, labeled (with an index)

 Can hold any type of data

 Similar to ndarray of NumPy, can call several ndarray functions on Series
 Hence, can use optimized NumPy functions

 DataFrames can be seen as:
 A Python dictionary of Series objects

 More intuitively: SQL table

Pandas DataFrame

 Construction: Either from data file, or from Series/dict/…

d = {
'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])

}

df = pd.DataFrame(d)

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Output:

Pandas DataFrame

Quick view at the constructed frame
 df.head(n) – returns first n rows of dataset (default = 5)

 df.tail(n) – returns last n rows of dataset (default = 5)

 df.describe() – returns basic statistical information

Pandas DataFrame

Quick view at the constructed frame
 df.head(n) – returns first n rows of dataset (default = 5)

 df.tail(n) – returns last n rows of dataset (default = 5)

 df.describe() – returns basic statistical information

Pandas DataFrame

 Indexing

df[`one`] one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

df[df[`one`] < 2]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

df[df[`one`] < 2]
df[df[`one`] < 2][`two`]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

Many other indexing operations possible
 Check out the documentation:

 https://pandas.pydata.org/pandas-docs/stable/dsintro.html

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

df[df[`one`] < 2]
df[df[`one`] < 2][`two`]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Recall: pandas is based on NumPy
 Element-wise operations

 Very convenient for feature engineering

df[`ratio`] = df[`one`] / df[`two`] one two ratio
a 1.0 1.0 1.0
b 2.0 2.0 1.0
c 3.0 3.0 1.0
d NaN 4.0 NaN

Pandas – SQL-like Data Queries

 Indexing as one example for SQL where

 In general: use filters to select subset of data
 Syntax: df[<filter expression>]

 <filter expression> can be many things, e.g.:
 Range:

 Boolean:

 Combinations:

hour_data[hour_data.weekday < 6]
hour_data[hour_data.season == 1]
hour_data[(hour_data.holiday == 0) & (hour_data.hr == 7)]

 SQL Insert column

 SQL Join

Pandas – SQL-like Data Queries

one two three
a 1.0 1.0 I
b 2.0 2.0 am
c 3.0 3.0 an
d NaN 4.0 Insert

df[`three`] = [`I`, `am`, `an`, `Insert`]

df_to_join = pd.dataFrame(
`two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c‘, `d`]),
`four' : pd.Series([4., 3., 2., 1.], index=['a', 'b', 'c', 'd'])

)

two four
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

 SQL Insert column

 SQL Join

Pandas – SQL-like Data Queries

one two three
a 1.0 1.0 I
b 2.0 2.0 am
c 3.0 3.0 an
d NaN 4.0 Insert

df[`three`] = [`I`, `am`, `an`, `Insert`]

df_to_join = pd.dataFrame(
`two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c‘, `d`]),
`four' : pd.Series([4., 3., 2., 1.], index=['a', 'b', 'c', 'd'])

)

df = pd.merge(df, df_to_join, on=`two`, how=`left`)

one two three four
a 1.0 1.0 I 4.0
b 2.0 2.0 am 3.0
c 3.0 3.0 an 2.0
d NaN 4.0 Insert 1.0

 SQL Update -- as an example of apply()

 General advice: apply is usually much more efficient than:

 Apply still uses loops internally, but more efficiently implemented

Pandas – SQL-like Data Queries

df[`two`] = df[`two`].apply(lambda x: x**2)

squared = []
for x in df[`two`]:

squared.append(x**2)
df[`two] = squared

one two three four
a 1.0 1.0 I 4.0
b 2.0 4.0 am 3.0
c 3.0 9.0 an 2.0
d NaN 16.0 Insert 1.0

def square(x):
return(x**2)

df[`two`] = df[`two`].apply(square)

 Vectorization (only works if all calls in function are vectorized)

 Vectorization + numpy arrays (removes pandas indexing overhead)

 Potential gain from looping to vectorized numpy: >1000x

Pandas – Optimization One Step Further

df[`two`] = df[`two`].apply(lambda x: x**2) one two three four
a 1.0 1.0 I 4.0
b 2.0 4.0 am 3.0
c 3.0 9.0 an 2.0
d NaN 16.0 Insert 1.0

def square(x):
return(x**2)

df[`two`] = square(df[`two`])

def square(x):
return(x**2)

df[`two`] = square(df[`two`].values)

 SQL Groupby
 Note groupby returns a DataFrameGroupBy object
 You need to call some aggregation function on that object
 Index will be created based on groupby key

 In most cases, you want to reset the index to get a nice format (e.g., join-able with other df)

 Alternative aggregations: median, count, min, max, nunique, sum, …

Pandas – SQL-like Data Queries

 SQL Groupby
 Can also group by two or more columns

Pandas – SQL-like Data Queries

 Combinations of filters and SQL-like statements

Pandas – SQL-like Data Queries

Methods available for handling missing data:

fillna(value) dropna() interpolate()

Pandas: Data Wrangling

Methods for inconsistent data?
 Mainly: df.describe()

 Find out about inconsistent data in a different way?

 Inconsistent data, some preprocessing tasks: better use visualization
and/or SciKit Learn

Pandas: Data Wrangling

 Close to all feature engineering you do, you will do with pandas
 Exception: learned features

 Differences, ratios, etc: one liner with pandas

 Similarly: dummy encoding for categorical variables
 Some learners can not handle categoricals

Pandas: Feature engineering

 Close to all feature engineering you do, you will do with pandas
 Exception: learned features

 Differences, ratios, etc: one liner with pandas

 Similarly: dummy encoding for categorical variables
 Some learners can not handle categoricals

Pandas: Feature engineering

 The previous slides hold almost everything you need for
 Handling missing data (e.g., <filter> == NaN)
 Basic data analysis
 Feature engineering

 You can not use pandas for
 Visualization other than tables and numbers
 Predictive modeling

Pandas Recap

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

Seaborn

https://seaborn.pydata.org/examples/index.html

Seaborn

 Visualization library
 Used for data analysis that goes beyond texts and tables

 Built on top of Matplotlib
 Customized themes and high-level interface to control Matplotlib figure

aesthetics

 Can easily plot distributions, split data on categories, etc.

 First step: import seaborn as sns

Seaborn - Examples

 Barplot (e.g., for categorical variables)

Seaborn - Examples

 Distplot (for investigating distributions)

Seaborn - Examples

 Correlation matrix

Seaborn - Examples

 Jointplot: investigate bivariate
distributions while also retrieving
univariate distribution of each
variable / feature

Seaborn - Examples

 Jointplot: investigating bivariate
distributions

 JointGrid: slightly more powerful
 E.g., can fit regression to joint

distribution

Seaborn - Examples

 Pairplot: investigating bivariate
distributions

 hue keyword allows to separate data
items by a categorical variable
 Can facilitate discoveries

 Obviously: higher temp in summer, more
rides in summer, etc.

Seaborn - Examples

 Conditional plots:
FactorPlot and FacetGrid
 Allow to segment data based on

categorical variables (col keyword)

Seaborn - Examples

 Conditional plots:
FactorPlot and FacetGrid
 Allow to segment data based on

categorical variables (col keyword)

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

SciKit Learn

 Python library for predictive modeling

Offers large range of machine learning algorithm implementations
 Easily accessible via API

 Besides, built-in functions for a large range of related tasks
 E.g., functions for test-train split or cross validation

 Functions for data preprocessing

A few words on SciKit Learn in this Course

 Learning by Doing!

We don‘t have time to walk through each and every algorithm and
function
 >70 algorithms implemented for supervised learning alone

 Try yourself

SciKit Learn: Preprocessing
Useful methods for imputation and normalization

Recap: Modeling Pipeline

 Remember modeling guide from introduction:

Model Idea -> Algorithm -> Split Data -> Fit Model -> Test on Test Data

Model Idea: you need to come up with this yourself
 Type of problem

 Single vs multiple models

 Feature engineering

 …

SciKit Learn: Selection of Algorithm

Train/Test Split

Why do we need to split into train and test data?
 The goal of every model in data science is:

Predicting previously unseen data points

What would happen if we only use a single data set?

Overfitting!

Model would perfectly learn structure of data, but would not generalize

Train/Test Split

Taken from mlwiki.org

Train/Test Split

 How do we split data?
 Rule of thumb: 90/10 to 70/30 (depends on the amount of data you have)

 If enough data: consider an additional validation/hold-out set
 E.g., 70-20-10 on train/test/validation

 Fit model on train

 Check for improvement in validation

 Only rarely touch test set to verify improvements

 Another option: cross-validation (see later lectures)

SciKit Learn: Train/Test Split

 How to split data?

 For validation set: do the same thing recursively on train set

Fitting the Model

Once you have decided: easy, few lines of code

 Series of steps:
 Import correct module

 Instantiate model object (optional: with parameters; see later lectures)

 Fit model

Predictions & Testing the Model

 Prediction itself: just one line of code

 Evaluation of the model:
 Quality of predictions (wrt. previously defined metric):

Predictions & Testing the Model

 Evaluation of the model:
 Usefulness of features (note: shown here on RandomForest):

 Note: Insights of such analysis can be used for feature selection (see later
lectures)

Predictions & Testing the Model

 Evaluation of the model:
 Parameter Tuning (details: see last lecture):

Summary

 Today we discussed the Python DS stack

Obviously: a lot of content

 This lecture should serve as an indication about
 what tools and libraries you can use for investigating and manipulating data and

 how to use them effectively

 what tools and libraries you can use for modeling

 This lecture is not intended for you to now know everything there is

Summary

 You will get a lot of exercise in the practical tasks

We will look at some algorithmic libraries and model validation
techniques in more detail later

 Theoretical knowledge on algorithms: you hopefully have it from
previous courses

