
Practical Data Science:
The Python Stack

Dr. David Koll

Organizational Stuff

 Room change is permanent: we will stay in this room (2.101)!

Module: can be accredited for in Data Science study specialization (via
special accreditation)
 In subsequent semesters, we will have a new module specially designed for this

Recap: The DS Pipeline

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

?

???

Tools

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

General Advice

 For beginners:
 Getting to know one stack in detail is preferable over superficial ‘distributed’

knowledge

 You can likely do anything you want to do (now) in every major stack

 Differences are relatively minor in the beginning

 Some languages are easier to learn than others

 For advanced data scientists (or for competitions):
 Some algorithmic libraries are slightly more powerful than others

 Some visualization libraries allow more expressiveness than others

 Some tools are more convenient to use than others

First step: Picking a Language

http://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-software-leaders.html

First step: Picking a Language

http://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-software-leaders.html

Why Python in this Course?

Number one programming language in Data Science (according to KDN)

 Easier to learn than R, especially with CS background

 Anaconda offers easy package handling

 If you want to use something else, please feel free to do so

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

More Python libraries and tools: http://www.pydata.org

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

DS Environment Manager: Anaconda

 Anaconda is a Python distribution, featuring:
 Package manager

 720 open source packages, largely related to data science

 (Virtual) Environment manager

Makes DS projects easier to handle:
 Can have a different environment (e.g., Python 2 vs Python 3) for different projects

 Also allows for different versions of a particular package

 Each (virtual) environment can have different packages installed
 Some DS packages do have interfering dependencies

 Can import pre-defined images (e.g., Kaggle image for competitive data science)

Anaconda: Navigator

Anaconda: Navigator

Anaconda: Navigator

 Contrary to pip, conda installs from binaries (easier especially on Windows)

 General advice: try to conda install first, only run pip if conda fails

Anaconda: Navigator

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

Jupyter Notebook

 Jupyer Notebook is a web-service tool well suited for DS:

 All the projects in this course can be done exclusively in Jupyter Notebooks

 Similar tool in R available since 12/2016: R Notebooks
 However: Jupyter allows 40 different languages (including R), Spark integration etc.

 See: https://try.jupyter.org/

“The Jupyter Notebook is an open-source web
application that allows you to create and share
documents that contain live code, equations,
visualizations and explanatory text. Uses
include: data cleaning and transformation,
numerical simulation, statistical modeling,
machine learning and much more.”

- http://jupyter.org/

Jupyter Notebook

Jupyter Notebook

Jupyter Notebook

Jupyter Notebook

Textual Information: Markdown

Markdown is a very simple text formatting syntax
 Can easily build headings, tables, lists, formulas

Textual Information: Markdown

Markdown cheat sheets:
 https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

 https://github.com/cben/mathdown/wiki/math-in-markdown

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/cben/mathdown/wiki/math-in-markdown

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

Data Wrangling & Analysis: Pandas

 Pandas is the go-to library for handling (and analyzing) your data
 Built on top of NumPy, a fundamental scientific computing package for python

Offers functionality to…
 read data

 organize data in table-like data structures (dataframes)

 manipulate data(frames)

 aggregate statistics about data

 and more

…in a very fast and efficient way

NumPy in a Nutshell

NumPy offers ndarray:
 Object to encapsulate n-dimensional arrays

 Difference to standard python datastructures
 Needs homogeneous data

 Fixed size at initialization

 More efficient handling of larger data due to using pre-compiled C code

Most important for data wrangling: vectorization and broadcasting
 Vectorization avoids any (slow) loops

 Broadcasting allows element-by-element operations

NumPy Examples

 Vectorization:

 Broadcasting:

 Both yield an equivalent result, b is stretched on the right

 But: right side is 10% faster as it moves less memory

c = []
for i in range(len(a)):

c.append(a[i] * b[i])

c = a*b

Standard Python Numpy

a = np.array([1.0, 2.0, 3.0])
b = np.array([2.0, 2.0, 2.0])
a*b

a = np.array([1.0, 2.0, 3.0])
b = 2.0
a*b

Pandas

 In most projects, pandas is the first library you will use

 Example: read in .csv data

 creates a pandas DataFrame (df), *the* data structure of pandas

 df can then be manipulated further

When reading data, pandas offers integrated handling of data alignment
and missing data

import pandas as pd

df = pd.read_csv(`example_data.csv‘)

Pandas Data Structures

 Besides DataFrames, pandas offers Series:
 1d-array, labeled (with an index)

 Can hold any type of data

 Similar to ndarray of NumPy, can call several ndarray functions on Series
 Hence, can use optimized NumPy functions

 DataFrames can be seen as:
 A Python dictionary of Series objects

 More intuitively: SQL table

Pandas DataFrame

 Construction: Either from data file, or from Series/dict/…

d = {
'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])

}

df = pd.DataFrame(d)

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Output:

Pandas DataFrame

Quick view at the constructed frame
 df.head(n) – returns first n rows of dataset (default = 5)

 df.tail(n) – returns last n rows of dataset (default = 5)

 df.describe() – returns basic statistical information

Pandas DataFrame

Quick view at the constructed frame
 df.head(n) – returns first n rows of dataset (default = 5)

 df.tail(n) – returns last n rows of dataset (default = 5)

 df.describe() – returns basic statistical information

Pandas DataFrame

 Indexing

df[`one`] one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

df[df[`one`] < 2]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

df[df[`one`] < 2]
df[df[`one`] < 2][`two`]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Indexing

Many other indexing operations possible
 Check out the documentation:

 https://pandas.pydata.org/pandas-docs/stable/dsintro.html

df[`one`]
df[`two`]

df[:2]
df.iloc[3]

df[df[`one`] < 2]
df[df[`one`] < 2][`two`]

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

Pandas DataFrame

 Recall: pandas is based on NumPy
 Element-wise operations

 Very convenient for feature engineering

df[`ratio`] = df[`one`] / df[`two`] one two ratio
a 1.0 1.0 1.0
b 2.0 2.0 1.0
c 3.0 3.0 1.0
d NaN 4.0 NaN

Pandas – SQL-like Data Queries

 Indexing as one example for SQL where

 In general: use filters to select subset of data
 Syntax: df[<filter expression>]

 <filter expression> can be many things, e.g.:
 Range:

 Boolean:

 Combinations:

hour_data[hour_data.weekday < 6]
hour_data[hour_data.season == 1]
hour_data[(hour_data.holiday == 0) & (hour_data.hr == 7)]

 SQL Insert column

 SQL Join

Pandas – SQL-like Data Queries

one two three
a 1.0 1.0 I
b 2.0 2.0 am
c 3.0 3.0 an
d NaN 4.0 Insert

df[`three`] = [`I`, `am`, `an`, `Insert`]

df_to_join = pd.dataFrame(
`two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c‘, `d`]),
`four' : pd.Series([4., 3., 2., 1.], index=['a', 'b', 'c', 'd'])

)

two four
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

 SQL Insert column

 SQL Join

Pandas – SQL-like Data Queries

one two three
a 1.0 1.0 I
b 2.0 2.0 am
c 3.0 3.0 an
d NaN 4.0 Insert

df[`three`] = [`I`, `am`, `an`, `Insert`]

df_to_join = pd.dataFrame(
`two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c‘, `d`]),
`four' : pd.Series([4., 3., 2., 1.], index=['a', 'b', 'c', 'd'])

)

df = pd.merge(df, df_to_join, on=`two`, how=`left`)

one two three four
a 1.0 1.0 I 4.0
b 2.0 2.0 am 3.0
c 3.0 3.0 an 2.0
d NaN 4.0 Insert 1.0

 SQL Update -- as an example of apply()

 General advice: apply is usually much more efficient than:

 Apply still uses loops internally, but more efficiently implemented

Pandas – SQL-like Data Queries

df[`two`] = df[`two`].apply(lambda x: x**2)

squared = []
for x in df[`two`]:

squared.append(x**2)
df[`two] = squared

one two three four
a 1.0 1.0 I 4.0
b 2.0 4.0 am 3.0
c 3.0 9.0 an 2.0
d NaN 16.0 Insert 1.0

def square(x):
return(x**2)

df[`two`] = df[`two`].apply(square)

 Vectorization (only works if all calls in function are vectorized)

 Vectorization + numpy arrays (removes pandas indexing overhead)

 Potential gain from looping to vectorized numpy: >1000x

Pandas – Optimization One Step Further

df[`two`] = df[`two`].apply(lambda x: x**2) one two three four
a 1.0 1.0 I 4.0
b 2.0 4.0 am 3.0
c 3.0 9.0 an 2.0
d NaN 16.0 Insert 1.0

def square(x):
return(x**2)

df[`two`] = square(df[`two`])

def square(x):
return(x**2)

df[`two`] = square(df[`two`].values)

 SQL Groupby
 Note groupby returns a DataFrameGroupBy object
 You need to call some aggregation function on that object
 Index will be created based on groupby key

 In most cases, you want to reset the index to get a nice format (e.g., join-able with other df)

 Alternative aggregations: median, count, min, max, nunique, sum, …

Pandas – SQL-like Data Queries

 SQL Groupby
 Can also group by two or more columns

Pandas – SQL-like Data Queries

 Combinations of filters and SQL-like statements

Pandas – SQL-like Data Queries

Methods available for handling missing data:

fillna(value) dropna() interpolate()

Pandas: Data Wrangling

Methods for inconsistent data?
 Mainly: df.describe()

 Find out about inconsistent data in a different way?

 Inconsistent data, some preprocessing tasks: better use visualization
and/or SciKit Learn

Pandas: Data Wrangling

 Close to all feature engineering you do, you will do with pandas
 Exception: learned features

 Differences, ratios, etc: one liner with pandas

 Similarly: dummy encoding for categorical variables
 Some learners can not handle categoricals

Pandas: Feature engineering

 Close to all feature engineering you do, you will do with pandas
 Exception: learned features

 Differences, ratios, etc: one liner with pandas

 Similarly: dummy encoding for categorical variables
 Some learners can not handle categoricals

Pandas: Feature engineering

 The previous slides hold almost everything you need for
 Handling missing data (e.g., <filter> == NaN)
 Basic data analysis
 Feature engineering

 You can not use pandas for
 Visualization other than tables and numbers
 Predictive modeling

Pandas Recap

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

Seaborn

https://seaborn.pydata.org/examples/index.html

Seaborn

 Visualization library
 Used for data analysis that goes beyond texts and tables

 Built on top of Matplotlib
 Customized themes and high-level interface to control Matplotlib figure

aesthetics

 Can easily plot distributions, split data on categories, etc.

 First step: import seaborn as sns

Seaborn - Examples

 Barplot (e.g., for categorical variables)

Seaborn - Examples

 Distplot (for investigating distributions)

Seaborn - Examples

 Correlation matrix

Seaborn - Examples

 Jointplot: investigate bivariate
distributions while also retrieving
univariate distribution of each
variable / feature

Seaborn - Examples

 Jointplot: investigating bivariate
distributions

 JointGrid: slightly more powerful
 E.g., can fit regression to joint

distribution

Seaborn - Examples

 Pairplot: investigating bivariate
distributions

 hue keyword allows to separate data
items by a categorical variable
 Can facilitate discoveries

 Obviously: higher temp in summer, more
rides in summer, etc.

Seaborn - Examples

 Conditional plots:
FactorPlot and FacetGrid
 Allow to segment data based on

categorical variables (col keyword)

Seaborn - Examples

 Conditional plots:
FactorPlot and FacetGrid
 Allow to segment data based on

categorical variables (col keyword)

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

The Python Stack

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report
Results

Given in task description Given by datasets

SciKit Learn

 Python library for predictive modeling

Offers large range of machine learning algorithm implementations
 Easily accessible via API

 Besides, built-in functions for a large range of related tasks
 E.g., functions for test-train split or cross validation

 Functions for data preprocessing

A few words on SciKit Learn in this Course

 Learning by Doing!

We don‘t have time to walk through each and every algorithm and
function
 >70 algorithms implemented for supervised learning alone

 Try yourself 

SciKit Learn: Preprocessing
Useful methods for imputation and normalization

Recap: Modeling Pipeline

 Remember modeling guide from introduction:

Model Idea -> Algorithm -> Split Data -> Fit Model -> Test on Test Data

Model Idea: you need to come up with this yourself
 Type of problem

 Single vs multiple models

 Feature engineering

 …

SciKit Learn: Selection of Algorithm

Train/Test Split

Why do we need to split into train and test data?
 The goal of every model in data science is:

Predicting previously unseen data points

What would happen if we only use a single data set?

Overfitting!

Model would perfectly learn structure of data, but would not generalize

Train/Test Split

Taken from mlwiki.org

Train/Test Split

 How do we split data?
 Rule of thumb: 90/10 to 70/30 (depends on the amount of data you have)

 If enough data: consider an additional validation/hold-out set
 E.g., 70-20-10 on train/test/validation

 Fit model on train

 Check for improvement in validation

 Only rarely touch test set to verify improvements

 Another option: cross-validation (see later lectures)

SciKit Learn: Train/Test Split

 How to split data?

 For validation set: do the same thing recursively on train set

Fitting the Model

Once you have decided: easy, few lines of code

 Series of steps:
 Import correct module

 Instantiate model object (optional: with parameters; see later lectures)

 Fit model

Predictions & Testing the Model

 Prediction itself: just one line of code

 Evaluation of the model:
 Quality of predictions (wrt. previously defined metric):

Predictions & Testing the Model

 Evaluation of the model:
 Usefulness of features (note: shown here on RandomForest):

 Note: Insights of such analysis can be used for feature selection (see later
lectures)

Predictions & Testing the Model

 Evaluation of the model:
 Parameter Tuning (details: see last lecture):

Summary

 Today we discussed the Python DS stack

Obviously: a lot of content

 This lecture should serve as an indication about
 what tools and libraries you can use for investigating and manipulating data and

 how to use them effectively

 what tools and libraries you can use for modeling

 This lecture is not intended for you to now know everything there is 

Summary

 You will get a lot of exercise in the practical tasks

We will look at some algorithmic libraries and model validation
techniques in more detail later

 Theoretical knowledge on algorithms: you hopefully have it from
previous courses

