
When Clouds Meet

Online Social Networks

Advanced Computer Networks

Summer Semester 2013

Instructor: Prof. Dr. Xiaoming Fu

Teaching Assistant of This Session: Lei Jiao

Recap: Cloud Computing
o What is “Cloud Computing”?

o What are its typical characteristics?

o What are its service models?

o What are some typical production systems?

o OSN structures

• Graph theory concepts, power law, small world, etc.

o Network formation

o Random graph, Watts-Strogatz, Rich get richer, etc.

o Information cascades

o Social influence maximization

Recap: Online Social Networks

Today’s Session
o We narrow down our focus on a specific issue:

o Online Social Networks (OSNs) and socially aware Internet

services in cloud datacenters

o We aim to answer the following questions:

o What might be some problems “when cloud meets OSN”?

o How could these problems be modeled and solved?

o We cover the following topics:

o Scalable OSN data placement in server clusters

o Cost-minimizing OSN deployment over multiple clouds

o Social data placement in a datacenter environment

Scalable OSN Data Placement in

Server Clusters

Reference:

J. Pujol et al, “The Little Engine(s) That Could:

Scaling Online Social Networks”, SIGCOMM 2010

Introduction to OSN Scaling
o Background

o Online Social Networks (OSNs) extremely popular

o OSN grows fast: Twitter 1382% between 2009/2 to 2009/5

o OSN data placement across servers must be scalable

o Conventional scaling approaches

o Vertically: Upgrade existing hardware

• Expensive; Sometimes technically infeasible

o Horizontally: Deploy more servers and partitioning load

• Suitable only for stateless front-end servers

• If used for back-end storage servers, data must be partitioned into

disjoint components.

Introduction to OSN Scaling (Cont.)
o Conventional approaches inapplicable to OSN

o Data extremely huge: Makes vertical scaling inapplicable

o Data inter-connected: Makes horizontal scaling inapplicable

o Problems of using horizontal scaling to OSN

o Most OSN operations are between a user and her

neighbors

o Neighbors’ data are placed on multiple servers

o The “multi-get” inter-server operations can:

• Incur a lot of inter-server traffic

• Incur unpredictable response time

A Novel Solution
o SPAR (Social Partitioning And Replication)

o “One-hop Replication”: Replicating all a user’s neighbors’

data to the server that hosts the user’s own data

o “Social Locality”

o Requirements for SPAR

o Maintain local semantics

o Balance loads

o Be resilient to machine failures

o Be amenable to online operations

o Be stable

o Minimize the replication overhead

1

2 3 4 5

6

7 8 9 10

1

2 3 4 5

6

7 8 9 10

1

2 3 4 5

6

7 8 9 10

read traffic=0

replication=10

1

2 3 4

9 10

3 4 5

6

7 8

1

2 3

8 10

4 5

6

7 9

read=1

read=1

read=2

read=3

1

2 3 4 5

9 8 10 7

3 4 5

6

7 9 8

2

10

replication=0

replication=8

replication=2

read traffic=14

read traffic=0

read traffic=0

The SPAR Algorithm
o SPAR: Dynamically respond to 6 events

o Node (i.e., User) / Edge (i.e., Social relation) / Server

o Addition / Removal

o Event case 1: Node addition

o Create the master on the server with fewest masters

o Create k slaves and place randomly

o Event case 2: Node removal

o Remove the master and all slaves of this node

o Remove neighbors’ slaves that exist only for social locality

of this node, if not violating redundancy requirements

o Event case 3: Edge addition

2

3

4 1

5’

5

1’

6’

6

5’

2

3

4

1
5’

5

1’

6’ 6

2

3

4

1
5’

5

1’

6’

6

5’

2

3

4

1
2’

5

1’

6’

6

4’

1’

6’

3’

5’

1’

No movement

Move “1” to blue
Move “6” to red

The SPAR Algorithm (Cont.)
o Event case 4: Edge (between u and v) removal

o Remove u’s slave on v’s master server, if not violating the

redundancy requirement

o Vice versa for v’s slave

o Event case 5: Server addition

o Approach 1: Do nothing since “Event case 1” will place new

nodes on the new server automatically.

o Approach 2: Select and move existing masters to the new

server while maintaining one-hop replication for every user.

o Event case 6: Server removal

o Promote slaves on the remaining servers to be masters

Cost-Minimizing OSN Deployment

over Multiple Clouds

Reference:

L. Jiao et al, “Cost Optimization for Online Social

Networks on Geo-Distributed Clouds”, ICNP 2012

Introduction: OSN on Clouds
o OSN often needs to be deployed at diverse

geographic locations.

o Proximity to users, data availability, fault tolerance, etc.

o Clouds seamlessly matches this requirement.

o Geographic distribution

o “Infinite” on-demand resources

o “Pay-as-use” flexible charge schemes

o No need to build/operate one’s own datacenters

o OSN on clouds case studies

Introduction: OSN on Clouds (Cont.)
o OSN providers’ concerns

o Cost: The money spent in using cloud resources

o QoS: The service quality perceived by end users

• Access latency, etc.

o Such “cost-QoS” issue is complicated by OSN

dynamics

o New users join, old users leave, social relations vary, etc.

o Let’s investigate this problem: Minimizing the cost of

an OSN while providing satisfactory QoS to users,

over multiple geographically distributed clouds

How to define OSN QoS?
o In the multi-cloud scenario, for each user:

o One cloud is selected to host the user’s data, and serve this

user.

o All clouds can be sorted or ranked in terms of a given metric

(e.g., access latency perceived by the user).

• Each user has her 1st most preferred cloud, 2nd most preferred, etc.

Internet

Cloud

1

Cloud

2 Cloud

3

(1, 3, 2) (3, 1, 2)

1st most preferred

2nd most preferred

3rd most preferred

How to define OSN QoS? (Cont.)
o A vector approach: Define the QoS of an OSN service

as 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝑘 , . . . , 𝑞𝑁 , where

o 𝑞𝑘: The percentage of users whose data are placed on any

of their most preferred 𝑘 cloud(s)

o 𝑁: The total number of clouds

o In the left example:

o 𝑁 = 3

o 𝑞1 = 7 / 11 = 0.64

• A, B, D; F, H; I, J

o 𝑞2 = 𝑞1 + 3 / 11 = 0.91

• C; E, G

o 𝑞3 = 𝑞1 + 𝑞2 + 1 / 11 = 1

• K

o Thus, 𝑞 = (0.64, 0.91, 1)

How to define OSN QoS? (Cont.)
o How to use the vector approach to express “80% of

all accesses must be satisfied within 200 ms”?

o Step 1: For any user i, calculate ni, i.e., placing user i’s

data on any of her most preferred ni clouds can grant her

the access latency of less than 200 ms.

o Step 2: Calculate nmin = min(ni)

o Step 3: Set 𝑞 [nmin] = 80%

How to define OSN QoS? (Cont.)
o Example: User A: (1, 3, 2); B: (1, 2, 3); C: (1, 2, 3)

o If: A’s data must be placed on 1 or 3, i.e., na = 2

o B’s must be on 1 or 2, i.e., nb = 2

o C’s can be on any cloud, i.e., nc = 3

o Then set 𝑞 = (*, 0.8, 1)

Any value no greater than 0.8 in this case

Always 1

How to define OSN Cost?
o The monetary cost of an OSN service on multi-clouds

o Front-end cost: VM, traffic between OSN service and users

o Back-end cost: Storage, inter-cloud traffic, etc.

• Let’s focus on this.

o Different types of cost

o Storage cost

o Inter-cloud traffic cost

o Maintenance cost (for social locality)

Storage and Inter-Cloud Traffic Cost

Master replica Slave replica

One-Hop Replication

Storage and Inter-Cloud Traffic Cost

o Total storage cost = 330

o Total inter-cloud traffic cost = 50

Master replica

Slave replica
Storage cost

Traffic cost

Sorted clouds

Algorithm: Cosplay
o Basic idea: Swapping the roles of a user’s master and

her slave (if feasible) may lead to cost reduction.

o Swap u and u’ (i.e., u becomes u’ and u’ becomes u)

o Do NOT forget to maintain social locality

o Cost reduction: (10+6)-(9+5)-1=1

Social Data Placement in a

Datacenter Environment

Reference:

L. Jiao et al, “Optimizing Data Center Traffic for

Online Social Networks”, LANMAN 2013

X. Cheng et al, “Load-Balanced Migration of Social

Media to Content Clouds”, NOSSDAV 2011

Data Center Network Performance Goals

o Goal #1: Minimizing the core-layer traffic (Tree)

o The synchronization traffic traveling through core switches

o Goal #2: Minimizing the total perceived traffic (Tree/Fat-tree)

o The sum of the synchronization traffic perceived by every switch

Aggregation

Edge

Core

Aggregation

Edge

Core

Pod

Fig. 1 Tree

Fig. 2 Fat-tree

Algorithm

o Basic idea: Swapping the roles of a master-replica pair can

possibly reduce the traffic counted by the control matrix.

𝑣1 𝑣3

𝑣2 𝑣2′

𝑢′′

𝑢′

𝑢

𝑣3′

….

..

….

..

𝑣1′

Fig. 1 Before Swapping: Traffic = 15; Load = (2, 1, 1)

Algorithm (Cont.)

Fig. 2 After Swapping: Traffic = 11; Load = (1, 2, 1)

𝑣1

𝑣2

𝑢

𝑢′

𝑣1′

𝑣3

𝑢′′

𝑣3′′

….

..

….

..
𝑣2′

o Swapping the roles of 𝑢 and 𝑢′, while maintaining social

locality.

Algorithm (Cont.)

Fig. 3 After Swapping: Traffic = 11; Load = (2, 1, 1)

o Swapping the roles of 𝑣2 and 𝑣2′, while maintaining social

locality.

𝑣1

𝑣2′

𝑢

𝑣1′

𝑣3

𝑢′′

𝑣3′′

….

..

….

..
𝑢′

𝑣2

Load-Balanced Data Placement

Summary of Today’s Session
o We investigate a specific issue:

o Online Social Networks (OSNs) and socially aware Internet

services in cloud datacenters

o We introduce the problems, and algorithms on the

following topics:

o Scalable OSN data placement in server clusters

o Cost-minimizing OSN deployment over multiple clouds

o Social data placement in a datacenter environment

Thanks!

For any questions or concerns, please feel free to contact:

Lei Jiao, http://user.informatik.uni-goettingen.de/~ljiao/

http://user.informatik.uni-goettingen.de/~ljiao/
http://user.informatik.uni-goettingen.de/~ljiao/
http://user.informatik.uni-goettingen.de/~ljiao/

