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For Completeness: CrossValidation (CV)

= CrossValidation is extremely useful to evaluate model improvement
= k-fold cross validation creates k different folds of data
= Each fold is of size n

* |n each fold, a different portion of size n/k the training set is used as validation
set, remainder of data as training set

= Can pre-validate the model with — iy
training set before feeding to test
Set Round 1 Round 2 Round 3 Round 10

= Question: Most extreme CV? .

Xalndatlorf 93%
ccuracy:

90% 91% 95%

Final Accuracy = Average(Round 1, Round 2, ...)
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For Completeness: CrossValidation (CV)

= CrossValidation benefits?

= vs validation set: reduces risk of overfitting a single validation set
= vs validating with test set: also don‘t need to touch test set too often

" Drawbacks?
= Computationally expensive (linear complexity increase with factor k)

= Consider dependent/grouped data: need to be careful about fold creation
= E.g., time series analysis: do not produce folds at the wrong cut-offs
= May employ TimeSeriesSplit for this

= Alsoanissuein classification: need to make sure that fold sizes are large enough in terms of
absolute number of class members
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CrossValidation in SKLearn

= cross_val score function in metrics.model_selection

= Procedure:
" Import cross_val_score from metrics.model_selection
= Create classifier/regressor object clf
" Then, instead of using clf.fit use:

cross_val_score(clf, train[features], train[target], cv=k, scoring=score_function)

= Returns an array of length k, containing the validation error for each of the k folds
= You can average the scores of each fold to determine the CV error
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CrossValidation in SKLearn

. . Scoring Function
= Scoring can be any metric Classification |
‘accuracy” metrics.accuracy_score
‘average precision’ metrics.average precision_score
T metrics.f1_score
‘1 _micro’ metrics.f1_score
. . 1 _macro’ metrics.f1 score
* Why neg_* in Regression? 1 weighted metrics. 1_score
- T1_samples’ metrics.f1_score
= SKLearn internal implementation neg_log_loss e
precision” etc. metrics.precision_score
m HP. H H ‘recall’ etc. metrics.recall score
Optlmlzatlon to maximum ‘roc_auc’ metrics.roc_auc_score
= Scores that need to be minimized are thus custhing ____ . e .
adjusted_mutual_info_score metrics.adjusted_mutual_ info_score
negated ‘adjusted_rand_score’ metrics.adjusted_rand_score
. . ‘completeness_score’ metrics.completeness_score
u S|mp|y treat It as the abSOIUte Value’ the Closer ‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score

‘homogeneity_score’ metrics.homogeneity score

to ZerO, the better ‘mutual_info_score’ metrics.mutual_info_score

‘normalized_mutual_info_score’ metrics.normalized mutual_info_score

V_measure_score’ metrics.v _measure score
Regression

‘explained variance' metrics.explained variance_score
‘neg_mean_absolute _error metrics.mean_absolute_error
‘neg_mean_squared_ermor’ metrics.mean_squared_error
‘neg_mean_squared log_error metrics.mean_squared_log_error
‘neg_median_absolute_error’ metrics.median_absolute_error
2 metrics.r2_score
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CrossValidation in SKLearn

In [22]: white val cv score = cross val score(rf white, train white[features white], train white[ 'quality’],
scoring="neg mean_absolute error', cv=5)
white all cv score = cross val score(rf white all, train white all[features white], train white all[ 'quality’],

scoring="neg mean_absolute error', cv=5)

print(‘'white val Ccv', white val cv_score)
print(‘white All cv', white all cv_score)
print( ' Improvement: ', -white val cv_score + white all cv_score)

C:\Users\David\Anaconda2\lib\site-packages'\sklearn\model selection\ split.py:581: Warning: The least populated class in y has o
nly 3 members, which is too few. The minimum number of groups for any class cannot be less than n_splits=5.

% (min_groups, self.n splits)), Warning)
C:\Users\David\Anaconda2\lib\site-packages'\sklearn\model selection\ split.py:581: Warning: The least populated class in y has o
nly 4 members, which 1s too few. The minimum number of groups for any class cannot be less than n_splits=5.

% (min_groups, self.n splits)), Warning)

('white val cv', array([-0.41204437, -©.42539683, -0.39745628, -0.413738062, -0.38338658]))
('white All cv', array([-©.39163498, -©.38529785, -9.38656527, -0.38040712, -0.38491849]))
('Improvement: ', array([ ©.02048939, ©.84009898, ©.010891081, ©8.03333889, -8.8015239 ])

)
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CrossValidation in SKLearn

= A few comments:

= For unbalanced data: use StratifiedKFold
= \What does it ensure?

= For grouped data: use GroupKFold
= Ensures that data belonging to the same group is not both in train and test set
= Helps to avoid overfitting

= Sometimes it may be a good idea to shuffle data before CV

= E.g., if you have an ordered train set (regarding the output)
= Why?
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ML Al

gorithms

Naive Bayes
Averaged One-Dependence Estimators (ADDE)

Bayesian Belief Network (BEN)

Gaussian Naive Bayes
Multinomial Naive Bayes

|"\
'\ Bayesian Netwark (EM)
Classification and Regression Tree (CART)

Bayesian

Deep Boltzmann Machine (DBM)
Deep Belief Networks (DEN)

\.
- - Deep Learning
Convolutional Neural Network (CNN)  »———
| !

Random Forest

™

Gradient Boosting Machines (GEM) |
™

Boosting \

‘\ Ensemble

Bootstrapped Aggregation (Bagging)
AdaBoost

/
[ Iterative Dichotomiser 3 (ID3)

/ [
/[ Cc4.5
rd
C5.0
Chi-squared Automatic Interaction Detection (CHAID)

Decision Tree
| / \_ Decision Stump
_Conditional Decision Trees

' \ Ms

L) \
| |
!
|

Principal Component Analysis (PCA)
Partial Least Squares Regression (PLSR

Stacked Generalization (Elending) /|
I

Gradient Boosted Regression Trees (GBRT)
Y

\ [
g
| sammon Mapping

|
[ Multidimensional Scaling (MDS)

Radial Basis Function Network (RBFN)
Perceptron

Back-Propagation
|

Hopfield Network /
Ridge Regression

..I
-~ Neural Networks

)
J

Least Absolute Shrinkage and Selection Operator (LASSO)
Elastic Net
— |

Least Angle Regression (LARS)
Cubist
—

One Rule (OneR)
Zero Rule (ZeroR)
)

/_.I

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)
Linear Regression
™

Ordinary Least Squares Regression (OLSR)
Stepwise Regression

Multivariate Adaptive Regression Splines (MARS)
A

Locally Estimated Scatterplot Smoothing (LOESS)
Logistic Regression /

'\_I
\
~|_ Regularization ./
! I

~| Rule System /"
$7

Regression /

™y
! - . .
Projection Pursuit

>

Y e — |

I, .III Il I|I I'.I '\I i

Principal Component Regression (PCR)
' Mixture Discriminant Analysis (MDA)

'\ Quadratic Discriminant Analysis (QDA)

N
{,_ Machine Learning Algorith
f
\\ \
“.__Dimensionality Reduction - . )
Partial Least Squares Discriminant Analysis
Regularized Discriminant Analysis (RDA)

1
',"\ Flexible Discriminant Analysis (FDA)

. Linear Discriminant Analysis (LDA)

k-Nearest Neighbour (kNN)
Learning Vector Quantization (LVQ)

I', I".\.
‘. Instance Based |- —
. Self-Organizing Map (SOM)
Locally Weighted Learning (LWL)

/
\

k-Means
k-Medians
i Expecration Maximization
1

\ Clustering |-
—_— =
Hierarchical Clustering

h.
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Ensemble Learning

“The idea of ensemble methodology is to build a predictive model by
integrating multiple models. It is well-known that ensemble methods can
be used for improving prediction performance.” [1]
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Ensemble Performance

=" Ensemble methods have been hugely successful in DS competitions

= Dominant methods often get superseded after some time
= Still, dominated methods are useful (e.g., ensemble of ensembles)

" |n practice, simple ensembles or even single models may be preferred
= Application may require fast training and fast predictions (e.g., streamed data)

= Overly complex ensembles not suitable for a wide range of tasks
= E.g., several hours or even days training time is too much in many cases

" Trade-off between edge over competitors and performance
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Ensemble Learning — Naive Approach

= Scenariol : predict number of bike rides at hour X

= Naive approach:
= Build multiple models
= Use the same features
= Use different algorithms

= Example 1:
"= Model 1: Linear regression; Model 2: kNN regression

" Ensemble: Average results of both to predict bike rides
= Good idea?
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Ensemble Learning — Naive Approach

= Scenario 2: binary classification

= Naive approach: This solution is often not called ensemble,
= Build muItipIe models but multiple classifier system!
= Use the same features
= Use different algorithms

= Example 2:

= Model 1: Decision Tree classifier; Model 2: Logistic Regression classifier; Model 3:
kNN classifier

" Ensemble: Take majority vote
" Intuition: Get better results on uncertain samples, thereby improve performance
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Ensemble Learning - Algorithms

= Key rationale: many weak learners are better than one strong learner

= All learners are of the same class (e.g., decision trees)

= Learners should be diverse (e.g., choose different data samples)
= Can help to avoid overfitting

= Diminishing returns: at some point, adding more learners does not yield further
improvement

" The remaining lectures cover three styles of ensemble learning:
= Bagging (in particular Random Forest)
= Boosting (in particular Gradient Boosting)
= Stacking/Blending
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Ensembles: Bagging vs Boosting

1 learner n learners n learners

Single Model Bagging Boosting

Bagging re-samples data for each learner,
boosting iteratively weighs data
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Ensembles: Bagging vs Boosting

1 learner n learners n learners

Single Model Bagging Boosting

Bagging re-samples data for each learner,
boosting iteratively weighs data
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Bagging vs Boosting

= Core differences:

" Bagging is a parallel operation, boosting is iterative

= Bagging can be parallelized easily
= What about boosting? Bagging or Boosting faster?

= Boosting may introduce additional overfitting, bagging reduces it

= Boosting can overfit as it focuses on the set of samples it underperformed in previous
iteration (at the same time, reduces bias)

= Bagging re-samples randomly, avoiding overfitting (but will not reduce bias)

= Bagging takes simple average, boosting takes weighted average of learners
" Performance depends on data and task

= Best to know both!
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Bagging: RandomForest

= A RandomForest grows n DecisionTrees and takes their majority vote

A A A
N Dy D

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) RandomForest predicts 0
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Recap: Decision / Regression Trees

= The leafs of a DecisionTree show the estimated class/value of a
datapoint

= Arrive at the leaf by evaluating decision nodes top-down from root node

Movie Rating
8 100 Yes
9 1000 Yes
<7.5/10 >=7.5/10 7 200 No
5 10 No

Number

of Reviews 10 3 No
>= 10 8 250 Yes
3 600 No
5 150 No

10 10000 Yes
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How are DecisionTrees learned?

" Finding best tree is an NP-hard problem, hence need approximation
= What do you know about DecisionTree construction?

Number

Movie Rating: of Reviews?

@
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How are DecisionTrees learned?

= Recall: Nodes are determined based on feature importance
=" Do you remember which metrics are used?

Number

Movie Rating: of Reviews?

@
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How are DecisionTrees learned?

* Most prominent metric: information gain (IG) based on entropy
= Select feature with highest IG as root, then recurse

Number

Movie Rating: of Reviews?

@
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How are DecisionTrees learned?

* Most prominent metric: information gain (IG) based on entropy
= Select feature with highest IG as root, then recurse

Number Movie Rating

Movie Rating?

of Reviews? 8 100 Yes

9 1000 Yes

Q 7 200 No
5 10 No

10 5 No

8 250 Yes

3 600 No

5 150 No

10 10000 Yes
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How are DecisionTrees learned?

= Most prominent metric: information gain (IG) based on Shannon entropy (H)
= Entropy delivers information about
= Select feature with highest IG as root, then recurse

Number Movie Rating

Movie Rating?

of Reviews? 8 100 Yes

9 1000 Yes

Q 7 200 No

5 10 No

H(Y = Movie Rating > 7.5) = ~0.722 10 5 No
H(Y = Number Reviews > 10) =~0.971 3 250 V.
3 600 No

IG(Movie Rating > 7.5) = H(Y) —H(Y|X,) =1 - 0.45 = ~0.55
IG(Number Reviews > 10) = H(Y) —H(Y|X;) =1 -0.69 = ~0.31 10 10000 Yes

/| GEORG-AUGUST-UNIVERSITAT Recall: Entropy: H(Y) = — XI*; p; logp;
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How are DecisionTrees learned?

= Most prominent metric: information gain (IG) based on Shannon entropy (H)

= Entropy delivers information about
= Select feature with highest IG as root, then recurse

8 100 Yes

9 1000 Yes

'V'O”g! 7 200 No

5 10 No

H(Y = Movie Rating > 7.5) =~0.722 10 5 No
H(Y = Number Reviews > 10) =~0.971 3 250 Yes
3 600 No

IG(Movie Rating > 7.5) = H(Y) —H(Y|X,) =1 - 0.45 = ~0.55
IG(Number Reviews > 10) = H(Y) —H(Y|X;) =1 -0.69 = ~0.31 10 10000 Yes
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Quick Example: Entropy and IG

= What is the Entropy H and Information Gain IG when splitting the following
data on Movie Rating > 7.5?

8 100 Yes
9 1000 Yes
7 200 No
5 10 No

= Entropy: O (note that log(0) is usually undefined, but here treated as 0)

= Information Gain?
=1

= Can we also split elsewise with the same result?

G (qg?lilc;}?tEJSUST-UNIVERSITAT Recall: Entropy: H(Y) = — Z{;lpi log p;
’ ' Uncertainty of Data, here: purity of data



How are DecisionTrees learned?

= Recursive splitting

] _ 8 100 Yes
Movie Rating

9 1000 Yes

7 200 No

5 10 No

Number 10 > No

of Reviews? 8 250 Yes

3 600 No

10 10000 Yes
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How are DecisionTrees learned?

= Recursive splitting
= Why don‘t we split in the left sub-tree?

_ _ 8 100 Yes

Movie Rating
9 1000 Yes
Q 7 200 No

<7.5 >7.5

5 10 No
NG Number 10 > No
of Reviews? 8 250 Yes
3 600 No
10 10000 Yes
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How are DecisionTrees learned?

= Recursive splitting
= Why don‘t we split in the left sub-tree?

_ _ 8 100 Yes

Movie Rating
9 1000 Yes
Q 7 200 No

<7.5 >7.5
5 10 No
NG Number 10 > No
of Reviews? 8 250 Yes
<=10 >10 3 600 No
10 10000 Yes
NO YES

C JGEORG-AUGUST-UNIVERSITAT
A/ GOTTINGEN



How are DecisionTrees learned?

" Infinite number of possible split values
" How to determine split values?

_ _ 8 100 Yes

Movie Rating
9 1000 Yes
Q 7 200 No

<7.5 >7.5
5 10 No
NG Number 10 > No
of Reviews? 8 250 Yes
<=10 >10 3 600 No
10 10000 Yes
NO YES
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How are DecisionTrees learned?

= Infinite number of possible split values
" How to determine split values?

= One branch each numeric value?
8 100 Yes

= Typical approach:

. 9 1000 Yes
" Test IG(Y | X:t), where X:t denotes testing
. . . 7 200 No
a threshold t for information gain
.. 5 10 No
" How to limit t?
_ , _ 10 5 No
= Pick only one value in between two datapoints - y
= E.g., movie rating has only 6 different values ©
= Sort values - S0 e
10 10000 Yes

= Only test IG when label changes
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DecisionTrees for Regression

= For continous target value:

" Train regression model based on single feature
= Select feature with lowest error (sum of squares) as root
= Recurse

" Predictions: mean of values in leaf
= Leaf-size 1 = most accurate predictions?
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Advantages of DecisionTrees

= Applicable to a wide range of problems (classification + regression)
= Humanly readable and interpretable

= Can handle categorical variables

" No formal assumptions on variable distributions

= Simple, easily implementable approach

" Low computational cost
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Issues with Decision Trees?

= Overfitting
= Pruning,
= Maximum depth,
= Min data points in leafs,

" |n general, trees are highly sensitive to input given to them
= High Variance, Low Bias
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Bagging

= A Bagging approach grows n DecisionTrees and takes their majority vote

A A A
N Dy D

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0
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Bagging

= Bagging employs bootstrap sampling:
= Random sampling with replacement!

A A
0.0 0.0

Prediction: 0 Prediction: 1

/Q\

Prediction: 0
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Bagging

= Bagging typically outperforms a single tree because of random sampling
= Decrease the variance, while not (significantly) increasing bias (bias-variance

tradeoff)
A A

/Q\
Q.O @;<@ @‘0 O

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0
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Bagging

" [ssue with Bagging: trees are typically (highly) correlated
" In other words: they are very similar to each other

A A A
N Dy D

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0
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Bagging: RandomForest

= A RandomForest extends the Bagging idea
= Key point: Decorrelation of trees

A A
N D

Prediction: 0 Prediction: 1

This (very basic) RandomForest predicts 0

/Q\
NS

Prediction: 0
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RandomForest: Weak Learners

= How can we decorrelate trees?

In [93]:

Qut[93]:

hour_data.head()

instant | dteday season | yr | mnth | hr| holiday | weekday | workingday | weathersit | temp | atemp [ hum | windspeed | casual | registered | cnt
01 2011-01-01 |1 Q|1 a0 6 0 1 0.24 |02879(0.81 (0.0 3 13 16
1|2 2011-01-01 |1 Qg |1 110 6 0 1 0.22 |02727(0.80 (0.0 8 32 40
23 2011-01-01 |1 Q|1 210 6 0 1 0.22 |02727(0.80 (0.0 5 27 32
34 2011-01-01 |1 Q|1 3|0 6 0 1 0.24 |02879(0.75 (0.0 3 10 13
45 2011-01-01 |1 Qg |1 4 10 6 0 1 0.24 |02879(0.75 (0.0 a 1 1
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RandomForest: Weak Learners

= Data is a n-by-m matrix: can sample in either dimension

In [93]:

Qut[93]:

hour_data.head()

instant | dteday season | yr | mnth | hr| holiday | weekday | workingday | weathersit | temp | atemp [ hum | windspeed | casual | registered | cnt
01 2011-01-01 |1 Q|1 a0 6 0 1 0.24 |02879(0.81 (0.0 3 13 16
1|2 2011-01-01 |1 Qg |1 110 6 0 1 0.22 |02727(0.80 (0.0 8 32 40
23 2011-01-01 |1 Q|1 210 6 0 1 0.22 |02727(0.80 (0.0 5 27 32
34 2011-01-01 |1 Q|1 3|0 6 0 1 0.24 |02879(0.75 (0.0 3 10 13
45 2011-01-01 |1 Qg |1 4 10 6 0 1 0.24 |02879(0.75 (0.0 a 1 1

!
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RandomForest: Weak Learners

= Which dimension would be preferred?
= RandomForest: BOTH!
= Take sample of rows (bootstrap sample) AND
= Subset of columns for every tree (also called ,,random subspace method”)
= Sampling and subset selection?
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RandomForest: Algorithm [1]

= N = number of data points in data set, M = number of features

Define size of forest num_trees
for treein num_trees:
select n < N data points with replacement
fully* train a DecisionTree:
at each splitting node:
consider m < M random features
select feature with highest IG/lowest RSS...

Predict majority class (classification) or mean value (regression)

*no pruning, and to max_depth
[1] Breiman L., Random forests. In Machine Learning, pp. 5-32, 2001
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RandomForest: Out-Of-Bag Error

" How to estimate performance?
= Option 1: Cross-validation
= Option 2: Out-Of-Bag Error (inherent RF feature):

= We do not use all training data for all trees (n < N)

= How can we use that for validation?
= Each data point n* is not used in a number of trees num_trees* (1/e)
" Let num_trees* predict class/value for n*
= Take majority vote/mean value from num_trees* predictions
= Calculate Out-Of-Bag Error (OOB) for these predictions.
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RandomForest: Feature Importances

= What do you think constitutes an important feature in a RF?

= TWo measures:
= Mean information gain (averaged over all trees in the forest)

= Decrease in accuracy when permuting feature

" |dea: if a feature is important to the prediction, then randomly permuting its values will
decrease accuracy; if not, feature is not important

" One occasion where R and Python differ:
= SciKit Learn does not offer permuted importance, equivalent R package does
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RandomForest: Feature Importances

" [mportant: feature importances have shown to be
= ...biased towards high order categorical variables [1]
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http://rnowling.github.io/machine/learning/2015/08/10/random-forest-bias.html
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RandomForest: Feature Importances

" [mportant: feature importances have shown to be
= ...not expressive for correlated variables [1]:

" |f you have 2 correlated features:

= As soon as one of them is picked as a split criterion, importance of other can
decrease

= Why?

= Information is already gained from first variable/feature

[1] http://blog.datadive.net/selecting-good-features-part-iii-random-forests/
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RandomForest: Some Questions!

" |s limiting max_depth of the trees the same as selecting equivalently small m?

" Can | have the same feature appear in different distances from the root?

" Are random forests still humanly readable?

" Do random forests overfit? Why?

= |s OOB validation the same as cross validataion?

= Why is feature importance more reliable in RF than in, e.g., LR?
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RandomForest: Parameter Tuning!

= |[deas which parameters we should tune?

= Obvious: number of trees
" |ncrease in complexity by adding new trees?

= Depth of each tree

= Number of features used for each tree

= Data points / samples used for each tree
= Splitting criterion
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RF Tuning in SKlearn

= Number of trees:
" n_estimators (default = 10)
" How to evaluate best setting?

= First: how much data and many features does our dataset have?

= The more features, the more data, the more trees we can and should use
= Why?

= Second: after initial guess, evaluate different values
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RF Tuning in SKlearn

In [128]: from sklearn.model_selection import cross_val_score

" Number of t1" ™ <=
for i in np.arange(58, 258, 28):
" n_estimatc
In [121]: plt.plot(cv_score)

rfr = RandomForestRegressor(n_estimators=1i)
[} H t plt.ylabel('Cv Score")
OW O eva plt.xlabel( Number of Estimators');

cv_score.append(np.mean{cross_val_score(rfr, train, target_train_registered, cv=5)))
plt.xticks(np.arange(®,18,1), np.arange(58, 258, 28), rotation='vertical');
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RF Tuning in SKlearn

= Number of trees:

" n_estimators (default = 10)
" How to evaluate best setting?

= First: how much data

= The more features, t
= Why?

Ya

0

>

xr

r dataset have?
can and should use

= Second: after initial guess, evaluate different values
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RF Tuning in SKlearn
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RF Tuning in SKlearn

= Maximum depth of tree:

* max_depth (default=None)
= What does limiting max_depth help with?

= Other ways to avoid trees being built until overfitting?

" min_samples_split (default=2)
= Controls the minimum number of samples in a leaf to split further
= With bigger data, use larger min_samples_split (e.g., 20, 30, 40, 50)
= Helps avoiding capturing noise in the data
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RF Tuning in SKlearn

= Number of features used in each tree:
" max_features (default=auto)
= Any comment on: auto = sqrt(m) for classification, n_features for regression?
= Alternatives: log2, None
= More alternatives: Integer values or fractions

= Typically: use auto or define a fraction
= Optimal fraction depends on data, have to test multiple different values

= Large number of correlated features typically dictates lower fraction used
= Remember: we want to decorrelate trees!

= Note: increasing max_features also increases training time!
= With big data, have to find a tradeoff between optimality and runtime
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RF Tuning in SKlearn

= Number of data points used for each tree:
= Straightforward in BaggingClassifier: max_samples
= |[n RandomForest: bootstrap=True | False (default=True)
= Uses bootstrap sampling with sample size=n (any questions on this?)
= We cannot directly tune sample size!

= You can show mathematically that each data point will roughly appear 1 —1/e
trees, and not appear in 1/e trees (these are used for OOB error)

= Note: R RF package offers sampSize as a tuneable parameter
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RF Tuning in SKlearn

= Splitting criterion
= Criterion=gini|entropy (default=gini), note: entropy = information gain
= Criterion=mse|mae (default=mse)
= Which criterion is used for which type of task?

; Gini: Gini(E) =1- ), p;
= Gini vs entropy: c

Entropy: H(E)=—» . . p;logp;
= Both are pretty similar Py (£) ZJ—IP-’ 5Pj

= Both have been shown to give the same result in 98% of the cases [1]
= Computationally?

] SEORGAMGLATUNIVERSINAT [1] Raileanu et al: “Theoretical comparison between the Gini
Index and Information Gain criteria”. AMA 2004




RF Tuning in SKlearn

= Gini vs Entropy should be (one of ) the last parameter(s) to explore
= Usually does not give any significant difference

= My own experience: with large datasets, it sometimes does matter, gini
sometimes works a little bit better
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RF Tuning in SKlearn

= Many more parameters: try out yourself!

min_samples_leaf : int, float. optional (default=1) min_impurity_split : float,
- Ifint, then consider min_samples_leaf as the minimum number. threshold, otherwise itis a leaf.

« [ffloat, then min_samples_leaf is a percentage and ceil(min_samples_leaf *

L II ||.| 1 r B T .. " . . - :
n_samples) are the minimum number of samples for each node. Deprecated since version 0.19. min_impurity split has been deprecated in favor of

min_impurity decrease in 0.19 and will be removed in 0.21. Use

Changed in version 0.18: Added float values for percentages. min_impurity_decrease instead.
min_weight fraction_leaf : float, optional (default=0.) min_impurity decrease : float, optional (default=0.)
The minimum weighted fraction of the sum total of weights (of all the input sample A node will be split if this split induces a decrease of the impurity greater than or equal to
required to be at a leaf node. Samples have equal weight when sample_weight is this value.
provided.

The weighted impurity decrease equation is the following:

max_leaf_nodes : int or None, optional (default=None) Nt /N " (Impurity -

Mt R /Nt * right_ impurity
-NtL/N

M_t * left_impurity)

Grow trees with max_leaf nodes in best-first fashion. Best nodes are defined as

reduction in impurity. If None then unlimited number of l2af nodes. where n is the total number of samples, n_t is the number of samples at the current

node, N_t_L is the number of samples in the left child, and n_t_R is the number of
samples in the right child.

N, N_t, n_t_R and n_t_L all refer to the weighted sum, if sample_weight is passed.

(2 j GEORG-AUGUST-UNIVERSITAT New in version 0.19.
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Parameter Tuning in SKlearn

HELP! That’s a lot of parameters to test!




Automated Parameter Tuning in SKlearn

= Luckily, SciKit has a way of automating this for you.
= GridSearchCV

= Takes dictionary of parameters and values as input and computes the
best parameter combinations by looping through all possible
combinations

" Find optimal value for all parameters at once, from a large range of
values each? Why? Why not?
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Automated Parameter Tuning in SKlearn

In [38]: from sklearn.model selection import GridSearchcV
params = {'n_estimators': [146,145,1508], 'max features': [90.3,0.5,0.7,0.9,1]}
grid = GridSearchcv(rf white all, params, cv=3, scoring="neg _mean_absolute error',verbose=1)
grid.fit(train white[features white], train white[ 'quality'])

Fitting 3 folds for each of 15 candidates, totalling 45 fits
[Parallel(n jobs=1)]: Done 45 out of 45 | elapsed: 1.2min finished

out[3@]: aGridsSearchCv(cv=3, error_score='raise’,
estimator=RandomForestClassifier(bootstrap=True, class weight="balanced subsample’,
criterion="gini", max_depth=None, max_features=None,
max_leaf nodes=None, min_ impurity split=1e-07,
min_samples leaf=1, min_samples split=2,
min weight fraction leaf=0.8, n estimators=145, n jobs=1,
oob_score=False, random state=1, verbose=8, warm_start=False),
fit params={}, iid=True, n_jobs=1,
param_grid={'n_estimators': [14@, 145, 158], 'max_features': [©.3, ©.5, 8.7, 8.9, 1]},
pre dispatch="2*n_jobs', refit=True, return train score=True,
scoring="neg mean_absolute error', verbose=1)

In [31]: grid.best estimator

Oout[31]: RandomForestClassifier(bootstrap=True, class weight="'balanced subsample’,
criterion="gini', max_depth=None, max features=1,
max_leaf nodes=None, min_impurity split=1le-07,
min_samples leaf=1, min_samples split=2,
min weight fraction leaf=0.8, n_estimators=145, n_jobs=1,
oob_score=False, random state=1, verbose=8, warm start=False)
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Automated Parameter Tuning in SKlearn

In [32]: from sklearn.model selection import GridSearchcCv
params = {'n_estimators': [140,145,150], 'max features': [®.3,0.5,0.7,0.9,1], 'min_samples split': [2, 5, 1@, 28, 50|}
grid = GridSearchcv(rf white all, params, cv=3, scoring='neg mean absolute error',verbose=1)
grid.fit(train_white[features white], train white[ 'quality'])

Fitting 3 folds for each of 75 candidates, totalling 225 fits
[Parallel(n_jobs=1)]: Done 225 out of 225 | elapsed: 5.4min finished

out[22]: GridSearchCv(cv=3, error_score='raise’,

estimator=RandomForestClassifier(bootstrap=True, class weight="balanced subsample’,
criterion="gini', max_depth=None, max_ features=None,
max_leaf nodes=None, min_impurlity split=1e-87,
min samples leaf=1, min samples split=2,
min_weight fraction leaf=0.8, n_estimators=145, n_jobs=1,
oob_score=False, random state=1, verbose=8, warm_start=False),

fit params={}, 1id=True, n_jobs=1,

param_grid={'n estimators': [14@, 145, 150], 'max_ features': [©.3, @.5, @.7, ©.9, 1], 'min_samples split': [2, 5, 1@, 2

@, 50]},
pre_dispatch="2*n_jobs', refit=True, return_train_score=True,
scoring="neg mean_absolute error’, verbose=1)

In [33]: grid.best estimator_

Out[33]: RandomForestClassifier(bootstrap=True, class weight="'balanced subsample’,
criterion="gini', max depth=None, max features=e.3,
max_leaf nodes=None, min_impurity split=1e-87,
min_samples leaf=1, min_samples split=5,
min_welght fraction leaf=0.8, n_estimators=145, n_jobs=1,
oob score=False, random state=1, verbose=0, warm start=False)
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Automated Parameter Tuning in SKlearn

In [34]: from sklearn.model selection import GridSearchcv
params = {'n _estimators': [140,145,150], 'max features’': [0.3,0.5,0.7,0.9,1], 'min samples split': [2, 5, 18, 20, 50]}
grid = GridSearchcV(rf white all, params, cv=5, scoring="neg mean absolute error',verbose=1)
grid.fit(train white[features white], train white['quality'])

Fitting 5 folds for each of 75 candidates, totalling 375 fits
[Parallel(n jobs=1)]: Done 375 out of 375 | elapsed: 10.7min finished

Out[34]: GridsearchCV({cv=5, error_score='ralse’,
estimator=RandomForestClassifier(bootstrap=True, class weight="balanced subsample’,
criterion="gini", max_depth=None, max features=HNone,
max_leat nodes=None, min_impurity split=le-@7,
min_samples leaf=1, min samples split=2,
min_weight fraction leaf=8.9, n_estimators=145, n_jobs=1,
oob_score=False, random_state=1, verbose=8, warm start=False),
fit params={}, iid=True, n jobs=1,
param grid={'n estimators': [14®, 145, 158], 'max features': [®©.3, 0.5, 0.7, 0.9, 1], 'min_samples split': [2, 5, 1@, 2
8, 50]},
pre_dispatch="'2*n_jobs', refit=True, return_train_score=True,
scoring="neg_mean_absolute error', verbose=1)

In [35]: grid.best estimator_

Out[35]: RandomForestClassifier(bootstrap=True, class weight="balanced subsample’,
criterion="gini', max_depth=Ncne, max features=0.3,
max_leaf nodes=None, min_impurity split=1e-87,
min_samples leaf=1, min_samples split=2,
min_weight fraction leaf=8.8, n_estimators=145, n_jobs=1,
oob_score=False, random state=1, verbose=e, warm start=False)
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Automated Parameter Tuning in SKlearn

In [42]: from sklearn.model selection import GridSearchcV
params = {'n estimators': [148,145,150], 'max features': [®.3,06.5,0.7, 0.9, 1.0]}
grid = GridSearchcv(rf white all, params, cv=3, scoring="neg mean absolute error’,verbose=1, n_jobs=4)
grid.fit(train white[features white], train white[ 'quality’])

Fitting 3 folds for each of 15 candidates, totalling 45 fits

[Parallel(n jobs=4)]: Done 45 out of 45 | elapsed: 25.5s finished

Out[42]: GridSearchCV(cv=3, error_score='raise’,
estimator=RandomForestClassifier(bootstrap=True, class weight="balanced subsample’,
criterion="gini', max_depth=None, max features=None,
max_leaf nodes=None, min_impurity split=1le-87,
min_samples leaf=1, min_samples split=2,
min weight fraction leaf=0.8, n estimators=145, n jobs=1,
oob score=False, random state=1, verbose=@, warm start=False),
fit params={}, i1id=True, n_jobs=4,
param grid={'n estimators': [14@, 145, 150], 'max features': [©.3, 0.5, 0.7, 0.9, 1.0]},
pre_dispatch="2*n_jobs', refit=True, return_train_score=True,
scoring="neg mean absolute error', verbose=1)
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