Practical Course DS: Advanced Algorithms – Part I

Dr. David Koll

For Completeness: CrossValidation (CV)

- CrossValidation is extremely useful to evaluate model improvement
 - k-fold cross validation creates k different folds of data
 - Each fold is of size n
 - In each fold, a different portion of size n/k the training set is used as validation set, remainder of data as training set
 - Can pre-validate the model with training set before feeding to test set
 - Question: Most extreme CV?

Final Accuracy = Average(Round 1, Round 2, ...)

For Completeness: CrossValidation (CV)

CrossValidation benefits?

- vs validation set: reduces risk of overfitting a single validation set
- vs validating with test set: also don't need to touch test set too often
- Drawbacks?
 - Computationally expensive (linear complexity increase with factor k)
 - Consider dependent/grouped data: need to be careful about fold creation
 - E.g., time series analysis: do not produce folds at the wrong cut-offs
 - May employ TimeSeriesSplit for this
 - Also an issue in classification: need to make sure that fold sizes are large enough in terms of absolute number of class members

- cross_val_score function in metrics.model_selection
- Procedure:
 - Import cross_val_score from metrics.model_selection
 - Create classifier/regressor object clf
 - Then, instead of using clf.fit use:

cross_val_score(clf, train[features], train[target], cv=k, scoring=score_function)

- Returns an array of length k, containing the validation error for each of the k folds
- You can average the scores of each fold to determine the CV error

	Scoring	Function
Scoring can be any metric	Classification	
	'accuracy'	<pre>metrics.accuracy_score</pre>
	'average_precision'	<pre>metrics.average_precision_score</pre>
	'f1'	metrics.f1_score
	'f1_micro'	metrics.f1_score
	'f1_macro'	metrics.f1_score
Why neg * in Regression?	'f1_weighted'	metrics.f1_score
/ 0_ 0	'f1_samples'	metrics.f1_score
SKLearn internal implementation	'neg_log_loss'	metrics.log_loss
on Learn and en prementation	'precision' etc.	metrics.precision_score
Ontimization to maximum	'recall' etc.	metrics.recall_score
opennization to maximum	'roc_auc'	metrics.roc_auc_score
Scores that need to be minimized are thus	Clustering	
	'adjusted_mutual_info_score'	<pre>metrics.adjusted_mutual_info_score</pre>
negated	'adjusted_rand_score'	<pre>metrics.adjusted_rand_score</pre>
	'completeness_score'	metrics.completeness_score
Simply treat it as the absolute value, the closer	'fowlkes_mallows_score'	<pre>metrics.fowlkes_mallows_score</pre>
	'homogeneity_score'	metrics.homogeneity_score
to zero, the better	'mutual_info_score'	<pre>metrics.mutual_info_score</pre>
	'normalized_mutual_info_score'	<pre>metrics.normalized_mutual_info_score</pre>
	'v_measure_score'	metrics.v_measure_score
	Regression	
	'explained_variance'	metrics.explained_variance_score
	'neg_mean_absolute_error'	metrics.mean_absolute_error
	'neg_mean_squared_error'	metrics.mean_squared_error
	'neg_mean_squared_log_error'	<pre>metrics.mean_squared_log_error</pre>
	'neg_median_absolute_error'	metrics.median_absolute_error
	'r2'	metrics.r2_score

('white All CV', array([-0.39163498, -0.38529785, -0.38656527, -0.38040712, -0.38491049]))
('Improvement: ', array([0.02040939, 0.04009898, 0.01089101, 0.03333089, -0.0015239]))

A few comments:

- For unbalanced data: use StratifiedKFold
 - What does it ensure?
- For grouped data: use GroupKFold
 - Ensures that data belonging to the same group is not both in train and test set
 - Helps to avoid overfitting
- Sometimes it may be a good idea to shuffle data before CV
 - E.g., if you have an ordered train set (regarding the output)
 - Why?

ML Algorithms

Ensemble Learning

"The idea of ensemble methodology is to build a predictive model by integrating multiple models. It is well-known that ensemble methods can be used for improving prediction performance." [1]

[1] Rokach, L. (2010). "Ensemble-based classifiers". Artificial Intelligence Review. 33 (1-2): 1–39

Ensemble Performance

- Ensemble methods have been hugely successful in DS competitions
 - Dominant methods often get superseded after some time
 - Still, dominated methods are useful (e.g., ensemble of ensembles)
- In practice, simple ensembles or even single models may be preferred
 - Application may require fast training and fast predictions (e.g., streamed data)
 - Overly complex ensembles not suitable for a wide range of tasks
 - E.g., several hours or even days training time is too much in many cases
- Trade-off between edge over competitors and performance

Ensemble Learning – Naïve Approach

- Scenario1 : predict number of bike rides at hour X
- Naïve approach:
 - Build multiple models
 - Use the same features
 - Use different algorithms
- Example 1:
 - Model 1: Linear regression; Model 2: kNN regression
 - Ensemble: Average results of both to predict bike rides
 - Good idea?

Ensemble Learning – Naïve Approach

- Scenario 2: binary classification
- Naïve approach:
 - Build multiple models
 - Use the same features
 - Use different algorithms

This solution is often not called ensemble, but multiple classifier system!

- Example 2:
 - Model 1: Decision Tree classifier; Model 2: Logistic Regression classifier; Model 3: kNN classifier
 - Ensemble: Take majority vote
 - Intuition: Get better results on uncertain samples, thereby improve performance

Ensemble Learning - Algorithms

- Key rationale: many weak learners are better than one strong learner
 - All learners are of the same class (e.g., decision trees)
 - Learners should be diverse (e.g., choose different data samples)
 - Can help to avoid overfitting
 - Diminishing returns: at some point, adding more learners does not yield further improvement
- The remaining lectures cover three styles of ensemble learning:
 - Bagging (in particular Random Forest)
 - Boosting (in particular Gradient Boosting)
 - Stacking/Blending

Ensembles: Bagging vs Boosting

Bagging re-samples data for each learner, boosting *iteratively* weighs data

Ensembles: Bagging vs Boosting

Bagging vs Boosting

Core differences:

- Bagging is a parallel operation, boosting is iterative
 - Bagging can be parallelized easily
 - What about boosting? Bagging or Boosting faster?
- Boosting may introduce additional overfitting, bagging reduces it
 - Boosting can overfit as it focuses on the set of samples it underperformed in previous iteration (at the same time, reduces bias)
 - Bagging re-samples randomly, avoiding overfitting (but will not reduce bias)
- Bagging takes simple average, boosting takes weighted average of learners
- Performance depends on data and task
- Best to know both!

Bagging: RandomForest

A RandomForest grows n DecisionTrees and takes their majority vote

This (very basic) RandomForest predicts 0

Recap: Decision / Regression Trees

- The leafs of a **DecisionTree** show the estimated class/value of a datapoint
- Arrive at the leaf by evaluating decision nodes top-down from root node

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
5	150	No
10	10000	Yes

- Finding best tree is an NP-hard problem, hence need approximation
- What do you know about DecisionTree construction?

Recall: Nodes are determined based on feature importance
 Do you remember which metrics are used?

Most prominent metric: information gain (IG) based on entropy
 Select feature with highest IG as root, then recurse

Most prominent metric: information gain (IG) based on entropy
 Select feature with highest IG as root, then recurse

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
5	150	No
10	10000	Yes

- Most prominent metric: information gain (IG) based on Shannon entropy (H)
 - Entropy delivers information about
 - Select feature with highest IG as root, then recurse

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

Recall: Entropy: $H(Y) = -\sum_{i=1}^{n} p_i \log p_i$ Uncertainty of Data, here: purity of data

- Most prominent metric: information gain (IG) based on Shannon entropy (H)
 - Entropy delivers information about
 - Select feature with highest IG as root, then recurse

Movie Rating!

H(Y = Movie Rating > 7.5) = ~0.722 H(Y = Number Reviews > 10) = ~0.971

IG(Movie Rating > 7.5) = $H(Y) - H(Y|X_1) = 1 - 0.45 =$ **~0.55** IG(Number Reviews > 10) = $H(Y) - H(Y|X_1) = 1 - 0.69 =$ ~0.31

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

Quick Example: Entropy and IG

What is the Entropy H and Information Gain IG when splitting the following data on Movie Rating > 7.5?

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No

- Entropy: 0 (note that log(0) is usually undefined, but here treated as 0)
- Information Gain?
 - **1**
- Can we also split elsewise with the same result?

Recall: Entropy: $H(Y) = -\sum_{i=1}^{n} p_i \log p_i$ Uncertainty of Data, here: purity of data

Recursive splitting

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

Recursive splitting

Why don't we split in the left sub-tree?

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

Recursive splitting

Why don't we split in the left sub-tree?

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

Infinite number of possible split values

How to determine split values?

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

- Infinite number of possible split values
 How to determine split values?
- One branch each numeric value?
- Typical approach:
 - Test IG(Y | X:t), where X:t denotes testing a threshold t for information gain
 - How to limit t?
 - Pick only one value in between two datapoints
 - E.g., movie rating has only 6 different values
 - Sort values
 - Only test IG when label changes

Movie Rating	# of Reviews	Recommend
8	100	Yes
9	1000	Yes
7	200	No
5	10	No
10	5	No
8	250	Yes
3	600	No
10	10000	Yes

DecisionTrees for Regression

- For continous target value:
 - Train regression model based on single feature
 - Select feature with lowest error (sum of squares) as root
 - Recurse
- Predictions: mean of values in leaf
 - Leaf-size 1 = most accurate predictions?

Advantages of DecisionTrees

- Applicable to a wide range of problems (classification + regression)
- Humanly readable and interpretable
- Can handle categorical variables
- No formal assumptions on variable distributions
- Simple, easily implementable approach
- Low computational cost

Issues with Decision Trees?

Overfitting

•

- Pruning,
- Maximum depth,
- Min data points in leafs,
- In general, trees are highly sensitive to input given to them
 - High Variance, Low Bias

A Bagging approach grows *n* DecisionTrees and takes their majority vote

This (very basic) Bagging ensemble predicts 0

- Bagging typically outperforms a single tree because of random sampling
 - Decrease the variance, while not (significantly) increasing bias (bias-variance tradeoff)

Prediction: 0

Prediction: 1

Prediction: 0

This (very basic) Bagging ensemble predicts 0

- Issue with Bagging: trees are typically (highly) correlated
 - In other words: they are very similar to each other

This (very basic) Bagging ensemble predicts 0

Bagging: RandomForest

- A RandomForest extends the Bagging idea
- Key point: Decorrelation of trees

Prediction: 0

Prediction: 1

Prediction: 0

This (very basic) RandomForest predicts 0

RandomForest: Weak Learners

How can we decorrelate trees?

In [93]: hour_data.head()

Out[93]:		instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
	0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	3	13	16
	1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	8	32	40
	2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	5	27	32
	3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	3	10	13
	4	5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	0	1	1

RandomForest: Weak Learners

Data is a n-by-m matrix: can sample in either dimension

In [93]:	hour_data.head()																	
Out[93]:		instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
	0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	3	13	16
	1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	8	32	40
	2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	5	27	32
	3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	3	10	13
	4	5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	0	1	1

RandomForest: Weak Learners

- Which dimension would be preferred?
 - RandomForest: BOTH!
 - Take sample of rows (bootstrap sample) AND
 - Subset of columns for every tree (also called "random subspace method")
 - Sampling and subset selection?

RandomForest: Algorithm [1]

N = number of data points in data set, M = number of features

```
Define size of forest num_trees
for tree in num_trees:
select n < N data points with replacement
fully* train a DecisionTree:
at each splitting node:
consider m < M random features
select feature with highest IG/lowest RSS...
```

Predict majority class (classification) or mean value (regression)

*no pruning, and to max_depth

[1] Breiman L., Random forests. In Machine Learning, pp. 5-32, 2001

RandomForest: Out-Of-Bag Error

- How to estimate performance?
- Option 1: Cross-validation
- Option 2: Out-Of-Bag Error (inherent RF feature):
- We do not use all training data for all trees (n < N)</p>
- How can we use that for validation?
 - Each data point n* is not used in a number of trees num_trees* (1/e)
 - Let num_trees* predict class/value for n*
 - Take majority vote/mean value from num_trees* predictions
 - Calculate Out-Of-Bag Error (OOB) for these predictions.

RandomForest: Feature Importances

- What do you think constitutes an important feature in a RF?
- Two measures:
 - Mean information gain (averaged over all trees in the forest)
 - Decrease in accuracy when permuting feature
 - Idea: if a feature is important to the prediction, then randomly permuting its values will decrease accuracy; if not, feature is not important
- One occasion where R and Python differ:
 - SciKit Learn does not offer permuted importance, equivalent R package does

RandomForest: Feature Importances

- Important: feature importances have shown to be
 - ...biased towards high order categorical variables [1]

http://rnowling.github.io/machine/learning/2015/08/10/random-forest-bias.html

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

[1] Strobl et al: "Bias in random forest variable importance measures: Illustrations, sources and a solution", BMC Bioinformatics 2007

RandomForest: Feature Importances

- Important: feature importances have shown to be
 - In the second second
- If you have 2 correlated features:
 - As soon as one of them is picked as a split criterion, importance of other can decrease
 - Why?
 - Information is already gained from first variable/feature

[1] http://blog.datadive.net/selecting-good-features-part-iii-random-forests/

RandomForest: Some Questions!

- Is limiting max_depth of the trees the same as selecting equivalently small m?
- Can I have the same feature appear in different distances from the root?
- Are random forests still humanly readable?
- Do random forests overfit? Why?
- Is OOB validation the same as cross validataion?
- Why is feature importance more reliable in RF than in, e.g., LR?

RandomForest: Parameter Tuning!

- Ideas which parameters we should tune?
 - Obvious: number of trees
 - Increase in complexity by adding new trees?
 - Depth of each tree
 - Number of features used for each tree
 - Data points / samples used for each tree
 - Splitting criterion

- Number of trees:
 - n_estimators (default = 10)
 - How to evaluate best setting?
 - First: how much data and many features does our dataset have?
 - The more features, the more data, the more trees we can and should use
 - Why?
 - Second: after initial guess, evaluate different values

- Number of trees:
 - n_estimators (default = 10)
 - How to evaluate best setting?

Second: after initial guess, evaluate different values

- Maximum depth of tree:
 - max_depth (default=None)
 - What does limiting max_depth help with?
 - Other ways to avoid trees being built until overfitting?
 - min_samples_split (default=2)
 - Controls the minimum number of samples in a leaf to split further
 - With bigger data, use larger min_samples_split (e.g., 20, 30, 40, 50)
 - Helps avoiding capturing noise in the data

- Number of features used in each tree:
 - max_features (default=auto)
 - Any comment on: auto = sqrt(m) for classification, n_features for regression?
 - Alternatives: log2, None
 - More alternatives: Integer values or fractions
 - Typically: use auto or define a fraction
 - Optimal fraction depends on data, have to test multiple different values
 - Large number of correlated features typically dictates lower fraction used
 - Remember: we want to decorrelate trees!
 - Note: increasing max_features also increases training time!
 - With big data, have to find a tradeoff between optimality and runtime

- Number of data points used for each tree:
 - Straightforward in BaggingClassifier: max_samples
 - In RandomForest: bootstrap=True | False (default=True)
 - Uses bootstrap sampling with sample size=n (any questions on this?)
 - We cannot directly tune sample size!
 - You can show mathematically that each data point will roughly appear 1 1/e trees, and not appear in 1/e trees (these are used for OOB error)
 - Note: R RF package offers sampSize as a tuneable parameter

- Splitting criterion
 - Criterion=gini|entropy (default=gini), note: entropy = information gain
 - Criterion=mse|mae (default=mse)
 - Which criterion is used for which type of task?

Gini vs entropy?

$$\textit{Gini}:\textit{Gini}(E) = 1 - \sum_{j=1}^{c} p_j^2$$

Entropy: $H(E) = -\sum_{j=1}^{c} p_j \log p_j$

- Both are pretty similar
- Both have been shown to give the same result in 98% of the cases [1]
- Computationally?

[1] Raileanu et al: "Theoretical comparison between the Gini Index and Information Gain criteria", AMA 2004

- Gini vs Entropy should be (one of) the last parameter(s) to explore
- Usually does not give any significant difference
- My own experience: with large datasets, it sometimes does matter, gini sometimes works a little bit better

Many more parameters: try out yourself!

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

- If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input sample required to be at a leaf node. Samples have equal weight when sample_weight is provided.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as a reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node, N_t_L is the number of samples in the left child, and N_t_R is the number of samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Parameter Tuning in SKlearn

HELP! That's a lot of parameters to test!

- Luckily, SciKit has a way of automating this for you.
 GridSearchCV
- Takes dictionary of parameters and values as input and computes the best parameter combinations by looping through all possible combinations
- Find optimal value for all parameters at once, from a large range of values each? Why? Why not?


```
In [30]: from sklearn.model selection import GridSearchCV
         params = { 'n estimators': [140,145,150], 'max features': [0.3,0.5,0.7,0.9,1] }
         grid = GridSearchCV(rf white all, params, cv=3, scoring='neg mean absolute error',verbose=1)
         grid.fit(train white[features white], train white['quality'])
         Fitting 3 folds for each of 15 candidates, totalling 45 fits
         [Parallel(n jobs=1)]: Done 45 out of 45 | elapsed: 1.2min finished
Out[30]: GridSearchCV(cv=3, error score='raise',
                estimator=RandomForestClassifier(bootstrap=True, class weight='balanced subsample',
                     criterion='gini', max depth=None, max features=None,
                     max leaf nodes=None, min impurity split=1e-07,
                     min samples leaf=1, min samples split=2,
                     min_weight_fraction_leaf=0.0, n estimators=145, n jobs=1,
                     oob score=False, random state=1, verbose=0, warm start=False),
                fit params={}, iid=True, n jobs=1,
                param grid={'n estimators': [140, 145, 150], 'max features': [0.3, 0.5, 0.7, 0.9, 1]},
                pre dispatch='2*n jobs', refit=True, return train score=True,
                scoring='neg mean absolute error', verbose=1)
```

In [31]: grid.best_estimator_

In [32]:	<pre>from sklearn.model_selection import GridSearchCV params = {'n_estimators': [140,145,150], 'max_features': [0.3,0.5,0.7,0.9,1], 'min_samples_split': [2, 5, 10, 20, 50]} grid = GridSearchCV(rf_white_all, params, cv=3, scoring='neg_mean_absolute_error',verbose=1) grid.fit(train_white[features_white], train_white['quality'])</pre>								
	Fitting 3 folds for each of 75 candidates, totalling 225 fits								
	[Parallel(n_jobs=1)]: Done 225 out of 225 elapsed: 5.4min finished								
Out[32]:	<pre>GridSearchCV(cv=3, error_score='raise', estimator=RandomForestClassifier(bootstrap=True, class_weight='balanced_subsample',</pre>								
In [33]:	<pre>grid.best_estimator_</pre>								
Out[33]:	<pre>RandomForestClassifier(bootstrap=True, class_weight='balanced_subsample',</pre>								

In [34]:	<pre>from sklearn.model_selection import GridSearchCV params = {'n_estimators': [140,145,150], 'max_features': [0.3,0.5,0.7,0.9,1], 'min_samples_split': [2, 5, 10, 20, 50]} grid = GridSearchCV(rf_white_all, params, cv=5, scoring='neg_mean_absolute_error',verbose=1) grid.fit(train_white[features_white], train_white['quality'])</pre>								
	Fitting 5 folds for each of 75 candidates, totalling 375 fits								
	[Parallel(n_jobs=1)]: Done 375 out of 375 elapsed: 10.7min finished								
Out[34]:	<pre>GridSearchCV(cv=5, error_score='raise', estimator=RandomForestClassifier(bootstrap=True, class_weight='balanced_subsample', criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=145, n_jobs=1, oob_score=False, random_state=1, verbose=0, warm_start=False), fit_params={}, iid=True, n_jobs=1, param_grid={'n_estimators': [140, 145, 150], 'max_features': [0.3, 0.5, 0.7, 0.9, 1], 'min_samples_split': [2, 5, 10, 2 0, 50]}, pre_dispatch='2*n_jobs', refit=True, return_train_score=True, scoring='neg_mean_absolute_error', verbose=1)</pre>								
In [35]:	grid.best_estimator_								
Out[35]:	<pre>RandomForestClassifier(bootstrap=True, class_weight='balanced_subsample', criterion='gini', max_depth=None, max_features=0.3, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=145, n_jobs=1, oob_score=False, random_state=1, verbose=0, warm_start=False)</pre>								

In [42]: from sklearn.model selection import GridSearchCV params = { 'n estimators': [140,145,150], 'max features': [0.3,0.5,0.7, 0.9, 1.0] } grid = GridSearchCV(rf_white_all, params, cv=3, scoring='neg_mean_absolute_error',verbose=1, n_jobs=4) grid.fit(train white[features white], train white['quality']) Fitting 3 folds for each of 15 candidates, totalling 45 fits [Parallel(n jobs=4)]: Done 45 out of 45 | elapsed: 25.5s finished Out[42]: GridSearchCV(cv=3, error score='raise', estimator=RandomForestClassifier(bootstrap=True, class weight='balanced subsample', criterion='gini', max_depth=None, max features=None, max leaf nodes=None, min impurity split=1e-07, min_samples_leaf=1, min_samples_split=2, min weight fraction leaf=0.0, n estimators=145, n jobs=1, oob score=False, random state=1, verbose=0, warm start=False), fit params={}, iid=True, n jobs=4, param_grid={'n_estimators': [140, 145, 150], 'max_features': [0.3, 0.5, 0.7, 0.9, 1.0]}, pre dispatch='2*n jobs', refit=True, return train score=True, scoring='neg mean absolute error', verbose=1)

