
Practical Course DS:
Advanced Algorithms – Part I

Dr. David Koll

For Completeness: CrossValidation (CV)

 CrossValidation is extremely useful to evaluate model improvement
 k-fold cross validation creates k different folds of data

 Each fold is of size n

 In each fold, a different portion of size n/k the training set is used as validation
set, remainder of data as training set

 Can pre-validate the model with
training set before feeding to test
set

 Question: Most extreme CV?

For Completeness: CrossValidation (CV)

 CrossValidation benefits?
 vs validation set: reduces risk of overfitting a single validation set

 vs validating with test set: also don‘t need to touch test set too often

 Drawbacks?
 Computationally expensive (linear complexity increase with factor k)

 Consider dependent/grouped data: need to be careful about fold creation
 E.g., time series analysis: do not produce folds at the wrong cut-offs

 May employ TimeSeriesSplit for this

 Also an issue in classification: need to make sure that fold sizes are large enough in terms of
absolute number of class members

CrossValidation in SKLearn

 cross_val_score function in metrics.model_selection

 Procedure:
 Import cross_val_score from metrics.model_selection

 Create classifier/regressor object clf

 Then, instead of using clf.fit use:

cross_val_score(clf, train[features], train[target], cv=k, scoring=score_function)

 Returns an array of length k, containing the validation error for each of the k folds

 You can average the scores of each fold to determine the CV error

CrossValidation in SKLearn

 Scoring can be any metric

 Why neg_* in Regression?
 SKLearn internal implementation

 Optimization to maximum

 Scores that need to be minimized are thus
negated

 Simply treat it as the absolute value, the closer
to zero, the better

CrossValidation in SKLearn

CrossValidation in SKLearn

 A few comments:
 For unbalanced data: use StratifiedKFold

 What does it ensure?

 For grouped data: use GroupKFold
 Ensures that data belonging to the same group is not both in train and test set

 Helps to avoid overfitting

 Sometimes it may be a good idea to shuffle data before CV
 E.g., if you have an ordered train set (regarding the output)

 Why?

ML Algorithms

Ensemble Learning

“The idea of ensemble methodology is to build a predictive model by
integrating multiple models. It is well-known that ensemble methods can
be used for improving prediction performance.” [1]

[1] Rokach, L. (2010). "Ensemble-based classifiers". Artificial Intelligence Review. 33 (1-2): 1–39

Ensemble Performance

 Ensemble methods have been hugely successful in DS competitions
 Dominant methods often get superseded after some time

 Still, dominated methods are useful (e.g., ensemble of ensembles)

 In practice, simple ensembles or even single models may be preferred
 Application may require fast training and fast predictions (e.g., streamed data)

 Overly complex ensembles not suitable for a wide range of tasks
 E.g., several hours or even days training time is too much in many cases

 Trade-off between edge over competitors and performance

Ensemble Learning – Naïve Approach

 Scenario1 : predict number of bike rides at hour X

 Naïve approach:
 Build multiple models

 Use the same features

 Use different algorithms

 Example 1:
 Model 1: Linear regression; Model 2: kNN regression

 Ensemble: Average results of both to predict bike rides
 Good idea?

Ensemble Learning – Naïve Approach

 Scenario 2: binary classification

 Naïve approach:
 Build multiple models
 Use the same features
 Use different algorithms

 Example 2:
 Model 1: Decision Tree classifier; Model 2: Logistic Regression classifier; Model 3:

kNN classifier
 Ensemble: Take majority vote
 Intuition: Get better results on uncertain samples, thereby improve performance

This solution is often not called ensemble,
but multiple classifier system!

Ensemble Learning - Algorithms

 Key rationale: many weak learners are better than one strong learner
 All learners are of the same class (e.g., decision trees)

 Learners should be diverse (e.g., choose different data samples)
 Can help to avoid overfitting

 Diminishing returns: at some point, adding more learners does not yield further
improvement

 The remaining lectures cover three styles of ensemble learning:
 Bagging (in particular Random Forest)

 Boosting (in particular Gradient Boosting)

 Stacking/Blending

Ensembles: Bagging vs Boosting

Single Model Bagging Boosting

Bagging re-samples data for each learner,
boosting iteratively weighs data

1 learner n learners n learners

Ensembles: Bagging vs Boosting

Single Model Bagging Boosting

Bagging re-samples data for each learner,
boosting iteratively weighs data

1 learner n learners n learners

Bagging vs Boosting

 Core differences:
 Bagging is a parallel operation, boosting is iterative

 Bagging can be parallelized easily

 What about boosting? Bagging or Boosting faster?

 Boosting may introduce additional overfitting, bagging reduces it
 Boosting can overfit as it focuses on the set of samples it underperformed in previous

iteration (at the same time, reduces bias)

 Bagging re-samples randomly, avoiding overfitting (but will not reduce bias)

 Bagging takes simple average, boosting takes weighted average of learners

 Performance depends on data and task

 Best to know both!

Bagging: RandomForest

 A RandomForest grows n DecisionTrees and takes their majority vote

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) RandomForest predicts 0

Recap: Decision / Regression Trees

 The leafs of a DecisionTree show the estimated class/value of a
datapoint

 Arrive at the leaf by evaluating decision nodes top-down from root node

Movie Rating

Number
of Reviews

< 7.5 / 10 >= 7.5 / 10

< 10 >= 10

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

5 150 No

10 10000 Yes

How are DecisionTrees learned?

 Finding best tree is an NP-hard problem, hence need approximation

 What do you know about DecisionTree construction?

Movie Rating?
Number

of Reviews?

How are DecisionTrees learned?

 Recall: Nodes are determined based on feature importance
 Do you remember which metrics are used?

Movie Rating?
Number

of Reviews?

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on entropy
 Select feature with highest IG as root, then recurse

Movie Rating?
Number

of Reviews?

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on entropy
 Select feature with highest IG as root, then recurse

Movie Rating?
Number

of Reviews?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

5 150 No

10 10000 Yes

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on Shannon entropy (H)
 Entropy delivers information about

 Select feature with highest IG as root, then recurse

Movie Rating?
Number

of Reviews?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

H(Y = Movie Rating > 7.5) = ~0.722
H(Y = Number Reviews > 10) = ~0.971

IG(Movie Rating > 7.5) = H(Y) – H(Y|X1) = 1 – 0.45 = ~0.55
IG(Number Reviews > 10) = H(Y) – H(Y|X1) = 1 – 0.69 = ~0.31

Recall: Entropy: H(Y) = − 𝑖=1
𝑛 𝑝𝑖 log𝑝𝑖

Uncertainty of Data, here: purity of data

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on Shannon entropy (H)
 Entropy delivers information about

 Select feature with highest IG as root, then recurse

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

H(Y = Movie Rating > 7.5) = ~0.722
H(Y = Number Reviews > 10) = ~0.971

IG(Movie Rating > 7.5) = H(Y) – H(Y|X1) = 1 – 0.45 = ~0.55
IG(Number Reviews > 10) = H(Y) – H(Y|X1) = 1 – 0.69 = ~0.31

Movie Rating!

Quick Example: Entropy and IG

 What is the Entropy H and Information Gain IG when splitting the following
data on Movie Rating > 7.5?

 Entropy: 0 (note that log(0) is usually undefined, but here treated as 0)

 Information Gain?
 1

 Can we also split elsewise with the same result?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

Recall: Entropy: H(Y) = − 𝑖=1
𝑛 𝑝𝑖 log𝑝𝑖

Uncertainty of Data, here: purity of data

How are DecisionTrees learned?

Movie Rating

Number
of Reviews?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

 Recursive splitting

How are DecisionTrees learned?

 Recursive splitting
 Why don‘t we split in the left sub-tree?

NO

Movie Rating

Number
of Reviews?

< 7.5 > 7.5

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

How are DecisionTrees learned?

 Recursive splitting
 Why don‘t we split in the left sub-tree?

NO

Movie Rating

Number
of Reviews?

< 7.5 > 7.5

<= 10 > 10

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

How are DecisionTrees learned?

 Infinite number of possible split values
 How to determine split values?

NO

Movie Rating

Number
of Reviews?

< 7.5 > 7.5

<= 10 > 10

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

How are DecisionTrees learned?

 Infinite number of possible split values
 How to determine split values?

 One branch each numeric value?

 Typical approach:
 Test IG(Y | X:t), where X:t denotes testing

a threshold t for information gain

 How to limit t?
 Pick only one value in between two datapoints

 E.g., movie rating has only 6 different values

 Sort values

 Only test IG when label changes

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

DecisionTrees for Regression

 For continous target value:
 Train regression model based on single feature

 Select feature with lowest error (sum of squares) as root

 Recurse

 Predictions: mean of values in leaf
 Leaf-size 1 = most accurate predictions?

Advantages of DecisionTrees

 Applicable to a wide range of problems (classification + regression)

 Humanly readable and interpretable

 Can handle categorical variables

 No formal assumptions on variable distributions

 Simple, easily implementable approach

 Low computational cost

Issues with Decision Trees?

 Overfitting
 Pruning,

 Maximum depth,

 Min data points in leafs,

 …

 In general, trees are highly sensitive to input given to them
 High Variance, Low Bias

Bagging

 A Bagging approach grows n DecisionTrees and takes their majority vote

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0

Bagging

 Bagging employs bootstrap sampling:
 Random sampling with replacement!

Prediction: 0 Prediction: 1 Prediction: 0

Bagging

 Bagging typically outperforms a single tree because of random sampling
 Decrease the variance, while not (significantly) increasing bias (bias-variance

tradeoff)

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0

Bagging

 Issue with Bagging: trees are typically (highly) correlated
 In other words: they are very similar to each other

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0

Bagging: RandomForest

 A RandomForest extends the Bagging idea

 Key point: Decorrelation of trees

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) RandomForest predicts 0

RandomForest: Weak Learners

 How can we decorrelate trees?

RandomForest: Weak Learners

 Data is a n-by-m matrix: can sample in either dimension

RandomForest: Weak Learners

 Which dimension would be preferred?
 RandomForest: BOTH!

 Take sample of rows (bootstrap sample) AND

 Subset of columns for every tree (also called „random subspace method“)

 Sampling and subset selection?

RandomForest: Algorithm [1]
 N = number of data points in data set, M = number of features

Define size of forest num_trees
for tree in num_trees:

select n < N data points with replacement

fully* train a DecisionTree:
at each splitting node:

consider m < M random features

select feature with highest IG/lowest RSS…

Predict majority class (classification) or mean value (regression)

*no pruning, and to max_depth
[1] Breiman L., Random forests. In Machine Learning, pp. 5-32, 2001

RandomForest: Out-Of-Bag Error

 How to estimate performance?

 Option 1: Cross-validation

 Option 2: Out-Of-Bag Error (inherent RF feature):

 We do not use all training data for all trees (n < N)

 How can we use that for validation?
 Each data point n* is not used in a number of trees num_trees* (1/e)

 Let num_trees* predict class/value for n*

 Take majority vote/mean value from num_trees* predictions

 Calculate Out-Of-Bag Error (OOB) for these predictions.

RandomForest: Feature Importances

 What do you think constitutes an important feature in a RF?

 Two measures:
 Mean information gain (averaged over all trees in the forest)

 Decrease in accuracy when permuting feature
 Idea: if a feature is important to the prediction, then randomly permuting its values will

decrease accuracy; if not, feature is not important

 One occasion where R and Python differ:
 SciKit Learn does not offer permuted importance, equivalent R package does

RandomForest: Feature Importances

 Important: feature importances have shown to be
 …biased towards high order categorical variables [1]

http://rnowling.github.io/machine/learning/2015/08/10/random-forest-bias.html

[1] Strobl et al: „Bias in random forest variable importance measures:

Illustrations, sources and a solution“, BMC Bioinformatics 2007

RandomForest: Feature Importances

 Important: feature importances have shown to be
 …not expressive for correlated variables [1]:

 If you have 2 correlated features:
 As soon as one of them is picked as a split criterion, importance of other can

decrease

 Why?
 Information is already gained from first variable/feature

[1] http://blog.datadive.net/selecting-good-features-part-iii-random-forests/

RandomForest: Some Questions!

 Is limiting max_depth of the trees the same as selecting equivalently small m?

 Can I have the same feature appear in different distances from the root?

 Are random forests still humanly readable?

 Do random forests overfit? Why?

 Is OOB validation the same as cross validataion?

 Why is feature importance more reliable in RF than in, e.g., LR?

RandomForest: Parameter Tuning!

 Ideas which parameters we should tune?
 Obvious: number of trees

 Increase in complexity by adding new trees?

 Depth of each tree

 Number of features used for each tree

 Data points / samples used for each tree

 Splitting criterion

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Maximum depth of tree:
 max_depth (default=None)

 What does limiting max_depth help with?

 Other ways to avoid trees being built until overfitting?

 min_samples_split (default=2)
 Controls the minimum number of samples in a leaf to split further

 With bigger data, use larger min_samples_split (e.g., 20, 30, 40, 50)

 Helps avoiding capturing noise in the data

RF Tuning in SKlearn

 Number of features used in each tree:
 max_features (default=auto)

 Any comment on: auto = sqrt(m) for classification, n_features for regression?

 Alternatives: log2, None

 More alternatives: Integer values or fractions

 Typically: use auto or define a fraction
 Optimal fraction depends on data, have to test multiple different values

 Large number of correlated features typically dictates lower fraction used
 Remember: we want to decorrelate trees!

 Note: increasing max_features also increases training time!
 With big data, have to find a tradeoff between optimality and runtime

RF Tuning in SKlearn

 Number of data points used for each tree:
 Straightforward in BaggingClassifier: max_samples

 In RandomForest: bootstrap=True|False (default=True)

 Uses bootstrap sampling with sample size=n (any questions on this?)

 We cannot directly tune sample size!

 You can show mathematically that each data point will roughly appear 1 – 1/e
trees, and not appear in 1/e trees (these are used for OOB error)

 Note: R RF package offers sampSize as a tuneable parameter

RF Tuning in SKlearn

 Splitting criterion
 Criterion=gini|entropy (default=gini), note: entropy = information gain

 Criterion=mse|mae (default=mse)

 Which criterion is used for which type of task?

 Gini vs entropy?
 Both are pretty similar

 Both have been shown to give the same result in 98% of the cases [1]

 Computationally?

[1] Raileanu et al: “Theoretical comparison between the Gini
Index and Information Gain criteria”, AMA 2004

RF Tuning in SKlearn

 Gini vs Entropy should be (one of) the last parameter(s) to explore

 Usually does not give any significant difference

 My own experience: with large datasets, it sometimes does matter, gini
sometimes works a little bit better

RF Tuning in SKlearn

 Many more parameters: try out yourself!

Parameter Tuning in SKlearn

HELP! That‘s a lot of parameters to test!

Automated Parameter Tuning in SKlearn

 Luckily, SciKit has a way of automating this for you.
 GridSearchCV

 Takes dictionary of parameters and values as input and computes the
best parameter combinations by looping through all possible
combinations

 Find optimal value for all parameters at once, from a large range of
values each? Why? Why not?

Automated Parameter Tuning in SKlearn

Automated Parameter Tuning in SKlearn

Automated Parameter Tuning in SKlearn

Automated Parameter Tuning in SKlearn

