
Practical Course DS:
Advanced Algorithms – Part I

Dr. David Koll

For Completeness: CrossValidation (CV)

 CrossValidation is extremely useful to evaluate model improvement
 k-fold cross validation creates k different folds of data

 Each fold is of size n

 In each fold, a different portion of size n/k the training set is used as validation
set, remainder of data as training set

 Can pre-validate the model with
training set before feeding to test
set

 Question: Most extreme CV?

For Completeness: CrossValidation (CV)

 CrossValidation benefits?
 vs validation set: reduces risk of overfitting a single validation set

 vs validating with test set: also don‘t need to touch test set too often

 Drawbacks?
 Computationally expensive (linear complexity increase with factor k)

 Consider dependent/grouped data: need to be careful about fold creation
 E.g., time series analysis: do not produce folds at the wrong cut-offs

 May employ TimeSeriesSplit for this

 Also an issue in classification: need to make sure that fold sizes are large enough in terms of
absolute number of class members

CrossValidation in SKLearn

 cross_val_score function in metrics.model_selection

 Procedure:
 Import cross_val_score from metrics.model_selection

 Create classifier/regressor object clf

 Then, instead of using clf.fit use:

cross_val_score(clf, train[features], train[target], cv=k, scoring=score_function)

 Returns an array of length k, containing the validation error for each of the k folds

 You can average the scores of each fold to determine the CV error

CrossValidation in SKLearn

 Scoring can be any metric

 Why neg_* in Regression?
 SKLearn internal implementation

 Optimization to maximum

 Scores that need to be minimized are thus
negated

 Simply treat it as the absolute value, the closer
to zero, the better

CrossValidation in SKLearn

CrossValidation in SKLearn

 A few comments:
 For unbalanced data: use StratifiedKFold

 What does it ensure?

 For grouped data: use GroupKFold
 Ensures that data belonging to the same group is not both in train and test set

 Helps to avoid overfitting

 Sometimes it may be a good idea to shuffle data before CV
 E.g., if you have an ordered train set (regarding the output)

 Why?

ML Algorithms

Ensemble Learning

“The idea of ensemble methodology is to build a predictive model by
integrating multiple models. It is well-known that ensemble methods can
be used for improving prediction performance.” [1]

[1] Rokach, L. (2010). "Ensemble-based classifiers". Artificial Intelligence Review. 33 (1-2): 1–39

Ensemble Performance

 Ensemble methods have been hugely successful in DS competitions
 Dominant methods often get superseded after some time

 Still, dominated methods are useful (e.g., ensemble of ensembles)

 In practice, simple ensembles or even single models may be preferred
 Application may require fast training and fast predictions (e.g., streamed data)

 Overly complex ensembles not suitable for a wide range of tasks
 E.g., several hours or even days training time is too much in many cases

 Trade-off between edge over competitors and performance

Ensemble Learning – Naïve Approach

 Scenario1 : predict number of bike rides at hour X

 Naïve approach:
 Build multiple models

 Use the same features

 Use different algorithms

 Example 1:
 Model 1: Linear regression; Model 2: kNN regression

 Ensemble: Average results of both to predict bike rides
 Good idea?

Ensemble Learning – Naïve Approach

 Scenario 2: binary classification

 Naïve approach:
 Build multiple models
 Use the same features
 Use different algorithms

 Example 2:
 Model 1: Decision Tree classifier; Model 2: Logistic Regression classifier; Model 3:

kNN classifier
 Ensemble: Take majority vote
 Intuition: Get better results on uncertain samples, thereby improve performance

This solution is often not called ensemble,
but multiple classifier system!

Ensemble Learning - Algorithms

 Key rationale: many weak learners are better than one strong learner
 All learners are of the same class (e.g., decision trees)

 Learners should be diverse (e.g., choose different data samples)
 Can help to avoid overfitting

 Diminishing returns: at some point, adding more learners does not yield further
improvement

 The remaining lectures cover three styles of ensemble learning:
 Bagging (in particular Random Forest)

 Boosting (in particular Gradient Boosting)

 Stacking/Blending

Ensembles: Bagging vs Boosting

Single Model Bagging Boosting

Bagging re-samples data for each learner,
boosting iteratively weighs data

1 learner n learners n learners

Ensembles: Bagging vs Boosting

Single Model Bagging Boosting

Bagging re-samples data for each learner,
boosting iteratively weighs data

1 learner n learners n learners

Bagging vs Boosting

 Core differences:
 Bagging is a parallel operation, boosting is iterative

 Bagging can be parallelized easily

 What about boosting? Bagging or Boosting faster?

 Boosting may introduce additional overfitting, bagging reduces it
 Boosting can overfit as it focuses on the set of samples it underperformed in previous

iteration (at the same time, reduces bias)

 Bagging re-samples randomly, avoiding overfitting (but will not reduce bias)

 Bagging takes simple average, boosting takes weighted average of learners

 Performance depends on data and task

 Best to know both!

Bagging: RandomForest

 A RandomForest grows n DecisionTrees and takes their majority vote

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) RandomForest predicts 0

Recap: Decision / Regression Trees

 The leafs of a DecisionTree show the estimated class/value of a
datapoint

 Arrive at the leaf by evaluating decision nodes top-down from root node

Movie Rating

Number
of Reviews

< 7.5 / 10 >= 7.5 / 10

< 10 >= 10

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

5 150 No

10 10000 Yes

How are DecisionTrees learned?

 Finding best tree is an NP-hard problem, hence need approximation

 What do you know about DecisionTree construction?

Movie Rating?
Number

of Reviews?

How are DecisionTrees learned?

 Recall: Nodes are determined based on feature importance
 Do you remember which metrics are used?

Movie Rating?
Number

of Reviews?

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on entropy
 Select feature with highest IG as root, then recurse

Movie Rating?
Number

of Reviews?

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on entropy
 Select feature with highest IG as root, then recurse

Movie Rating?
Number

of Reviews?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

5 150 No

10 10000 Yes

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on Shannon entropy (H)
 Entropy delivers information about

 Select feature with highest IG as root, then recurse

Movie Rating?
Number

of Reviews?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

H(Y = Movie Rating > 7.5) = ~0.722
H(Y = Number Reviews > 10) = ~0.971

IG(Movie Rating > 7.5) = H(Y) – H(Y|X1) = 1 – 0.45 = ~0.55
IG(Number Reviews > 10) = H(Y) – H(Y|X1) = 1 – 0.69 = ~0.31

Recall: Entropy: H(Y) = − 𝑖=1
𝑛 𝑝𝑖 log𝑝𝑖

Uncertainty of Data, here: purity of data

How are DecisionTrees learned?

 Most prominent metric: information gain (IG) based on Shannon entropy (H)
 Entropy delivers information about

 Select feature with highest IG as root, then recurse

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

H(Y = Movie Rating > 7.5) = ~0.722
H(Y = Number Reviews > 10) = ~0.971

IG(Movie Rating > 7.5) = H(Y) – H(Y|X1) = 1 – 0.45 = ~0.55
IG(Number Reviews > 10) = H(Y) – H(Y|X1) = 1 – 0.69 = ~0.31

Movie Rating!

Quick Example: Entropy and IG

 What is the Entropy H and Information Gain IG when splitting the following
data on Movie Rating > 7.5?

 Entropy: 0 (note that log(0) is usually undefined, but here treated as 0)

 Information Gain?
 1

 Can we also split elsewise with the same result?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

Recall: Entropy: H(Y) = − 𝑖=1
𝑛 𝑝𝑖 log𝑝𝑖

Uncertainty of Data, here: purity of data

How are DecisionTrees learned?

Movie Rating

Number
of Reviews?

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

 Recursive splitting

How are DecisionTrees learned?

 Recursive splitting
 Why don‘t we split in the left sub-tree?

NO

Movie Rating

Number
of Reviews?

< 7.5 > 7.5

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

How are DecisionTrees learned?

 Recursive splitting
 Why don‘t we split in the left sub-tree?

NO

Movie Rating

Number
of Reviews?

< 7.5 > 7.5

<= 10 > 10

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

How are DecisionTrees learned?

 Infinite number of possible split values
 How to determine split values?

NO

Movie Rating

Number
of Reviews?

< 7.5 > 7.5

<= 10 > 10

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

How are DecisionTrees learned?

 Infinite number of possible split values
 How to determine split values?

 One branch each numeric value?

 Typical approach:
 Test IG(Y | X:t), where X:t denotes testing

a threshold t for information gain

 How to limit t?
 Pick only one value in between two datapoints

 E.g., movie rating has only 6 different values

 Sort values

 Only test IG when label changes

Movie Rating # of Reviews Recommend

8 100 Yes

9 1000 Yes

7 200 No

5 10 No

10 5 No

8 250 Yes

3 600 No

10 10000 Yes

DecisionTrees for Regression

 For continous target value:
 Train regression model based on single feature

 Select feature with lowest error (sum of squares) as root

 Recurse

 Predictions: mean of values in leaf
 Leaf-size 1 = most accurate predictions?

Advantages of DecisionTrees

 Applicable to a wide range of problems (classification + regression)

 Humanly readable and interpretable

 Can handle categorical variables

 No formal assumptions on variable distributions

 Simple, easily implementable approach

 Low computational cost

Issues with Decision Trees?

 Overfitting
 Pruning,

 Maximum depth,

 Min data points in leafs,

 …

 In general, trees are highly sensitive to input given to them
 High Variance, Low Bias

Bagging

 A Bagging approach grows n DecisionTrees and takes their majority vote

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0

Bagging

 Bagging employs bootstrap sampling:
 Random sampling with replacement!

Prediction: 0 Prediction: 1 Prediction: 0

Bagging

 Bagging typically outperforms a single tree because of random sampling
 Decrease the variance, while not (significantly) increasing bias (bias-variance

tradeoff)

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0

Bagging

 Issue with Bagging: trees are typically (highly) correlated
 In other words: they are very similar to each other

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) Bagging ensemble predicts 0

Bagging: RandomForest

 A RandomForest extends the Bagging idea

 Key point: Decorrelation of trees

Prediction: 0 Prediction: 1 Prediction: 0

This (very basic) RandomForest predicts 0

RandomForest: Weak Learners

 How can we decorrelate trees?

RandomForest: Weak Learners

 Data is a n-by-m matrix: can sample in either dimension

RandomForest: Weak Learners

 Which dimension would be preferred?
 RandomForest: BOTH!

 Take sample of rows (bootstrap sample) AND

 Subset of columns for every tree (also called „random subspace method“)

 Sampling and subset selection?

RandomForest: Algorithm [1]
 N = number of data points in data set, M = number of features

Define size of forest num_trees
for tree in num_trees:

select n < N data points with replacement

fully* train a DecisionTree:
at each splitting node:

consider m < M random features

select feature with highest IG/lowest RSS…

Predict majority class (classification) or mean value (regression)

*no pruning, and to max_depth
[1] Breiman L., Random forests. In Machine Learning, pp. 5-32, 2001

RandomForest: Out-Of-Bag Error

 How to estimate performance?

 Option 1: Cross-validation

 Option 2: Out-Of-Bag Error (inherent RF feature):

 We do not use all training data for all trees (n < N)

 How can we use that for validation?
 Each data point n* is not used in a number of trees num_trees* (1/e)

 Let num_trees* predict class/value for n*

 Take majority vote/mean value from num_trees* predictions

 Calculate Out-Of-Bag Error (OOB) for these predictions.

RandomForest: Feature Importances

 What do you think constitutes an important feature in a RF?

 Two measures:
 Mean information gain (averaged over all trees in the forest)

 Decrease in accuracy when permuting feature
 Idea: if a feature is important to the prediction, then randomly permuting its values will

decrease accuracy; if not, feature is not important

 One occasion where R and Python differ:
 SciKit Learn does not offer permuted importance, equivalent R package does

RandomForest: Feature Importances

 Important: feature importances have shown to be
 …biased towards high order categorical variables [1]

http://rnowling.github.io/machine/learning/2015/08/10/random-forest-bias.html

[1] Strobl et al: „Bias in random forest variable importance measures:

Illustrations, sources and a solution“, BMC Bioinformatics 2007

RandomForest: Feature Importances

 Important: feature importances have shown to be
 …not expressive for correlated variables [1]:

 If you have 2 correlated features:
 As soon as one of them is picked as a split criterion, importance of other can

decrease

 Why?
 Information is already gained from first variable/feature

[1] http://blog.datadive.net/selecting-good-features-part-iii-random-forests/

RandomForest: Some Questions!

 Is limiting max_depth of the trees the same as selecting equivalently small m?

 Can I have the same feature appear in different distances from the root?

 Are random forests still humanly readable?

 Do random forests overfit? Why?

 Is OOB validation the same as cross validataion?

 Why is feature importance more reliable in RF than in, e.g., LR?

RandomForest: Parameter Tuning!

 Ideas which parameters we should tune?
 Obvious: number of trees

 Increase in complexity by adding new trees?

 Depth of each tree

 Number of features used for each tree

 Data points / samples used for each tree

 Splitting criterion

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Number of trees:
 n_estimators (default = 10)

 How to evaluate best setting?

 First: how much data and many features does our dataset have?
 The more features, the more data, the more trees we can and should use

 Why?

 Second: after initial guess, evaluate different values

RF Tuning in SKlearn

 Maximum depth of tree:
 max_depth (default=None)

 What does limiting max_depth help with?

 Other ways to avoid trees being built until overfitting?

 min_samples_split (default=2)
 Controls the minimum number of samples in a leaf to split further

 With bigger data, use larger min_samples_split (e.g., 20, 30, 40, 50)

 Helps avoiding capturing noise in the data

RF Tuning in SKlearn

 Number of features used in each tree:
 max_features (default=auto)

 Any comment on: auto = sqrt(m) for classification, n_features for regression?

 Alternatives: log2, None

 More alternatives: Integer values or fractions

 Typically: use auto or define a fraction
 Optimal fraction depends on data, have to test multiple different values

 Large number of correlated features typically dictates lower fraction used
 Remember: we want to decorrelate trees!

 Note: increasing max_features also increases training time!
 With big data, have to find a tradeoff between optimality and runtime

RF Tuning in SKlearn

 Number of data points used for each tree:
 Straightforward in BaggingClassifier: max_samples

 In RandomForest: bootstrap=True|False (default=True)

 Uses bootstrap sampling with sample size=n (any questions on this?)

 We cannot directly tune sample size!

 You can show mathematically that each data point will roughly appear 1 – 1/e
trees, and not appear in 1/e trees (these are used for OOB error)

 Note: R RF package offers sampSize as a tuneable parameter

RF Tuning in SKlearn

 Splitting criterion
 Criterion=gini|entropy (default=gini), note: entropy = information gain

 Criterion=mse|mae (default=mse)

 Which criterion is used for which type of task?

 Gini vs entropy?
 Both are pretty similar

 Both have been shown to give the same result in 98% of the cases [1]

 Computationally?

[1] Raileanu et al: “Theoretical comparison between the Gini
Index and Information Gain criteria”, AMA 2004

RF Tuning in SKlearn

 Gini vs Entropy should be (one of) the last parameter(s) to explore

 Usually does not give any significant difference

 My own experience: with large datasets, it sometimes does matter, gini
sometimes works a little bit better

RF Tuning in SKlearn

 Many more parameters: try out yourself!

Parameter Tuning in SKlearn

HELP! That‘s a lot of parameters to test!

Automated Parameter Tuning in SKlearn

 Luckily, SciKit has a way of automating this for you.
 GridSearchCV

 Takes dictionary of parameters and values as input and computes the
best parameter combinations by looping through all possible
combinations

 Find optimal value for all parameters at once, from a large range of
values each? Why? Why not?

Automated Parameter Tuning in SKlearn

Automated Parameter Tuning in SKlearn

Automated Parameter Tuning in SKlearn

Automated Parameter Tuning in SKlearn

