HANDS-ON SDN

You have now learned about:

* Python programming
* SDN basic principles
* Basic concepts (CP/DP separation etc.)
* De-facto standard interfaces (OpenFlow)
« Controllers (NOX, POX, ...)
* Virtualization (FlowVisor)

You have now learned about:
* Python programming
* SDN basic principles
* Basic concepts (CP/DP separation etc.)
* De-facto standard interfaces (OpenFlow)
* Controllers (NOX, POX, ...)
* Virtualization (FlowVisor)

* Put the stuff learned into practice:
* Implement OpenFlow?
* Implement controllers?
* Implement FlowVisor?

* Rather: learn how to use and program them!
* Hands-on work on state-of-the-art tools

How can we get there?

* Luckily, implementations are available.
* Switches implementing OF
* Controllers implementing OF

* So, how do we run them?
* We don‘t have a hardware testbed at hand
* We don‘t have access to a production network
* We may want to test different things on different network
topologies
* Simulation?

NET
WoRrkg

5D Session |

Network ossification: We see this today, main reason for SDN

Emulation of Networks

* Network emulation means to run unmodified code interactively on
virtual hardware

* Huge benefit:
* Can actually port our applications seamlessly to hardware

* Challenges:
* Scalability: need to model hosts, switches, links, controllers, ...
* Ease-of-Use: easily allow to create different topologies with varying
parameters

* Accuracy: results have to match results obtained from running same
experiment on hardware

—
WoRrkg

DI Session | 5

Also: innovation in applications far outpacing standardization;

“Mininet creates a realistic virtual network, running real kernel, switch
and application code, on a single machine (VM, cloud or native), in
seconds, with a single command”[1]

M- controllers
/‘\. hosts

[1] mininet.org

Network ossification: We see this today, main reason for SDN

“Mininet creates a realistic virtual network, running real kernel, switch
and application code, on a single machine (VM, cloud or native), in
seconds, with a single command”[1]

> sudo mn »

[1] mininet.org

Network ossification: We see this today, main reason for SDN

Enter Mininet

Mininet offers CLI & API to interact with the network

(see demo)

NET
WoRrkg

Sudo mn -> Pingall -> H1 ping h2 -> Iperf -> Nodes -> Xterm h1 -> Ifconfig —a
Complicated MAC addresses -> Sudo mn —c -> Sudo mn —mac ->xterm h1 -> ifconfig -a

Customize Topologies

Mininet is not limited to the very basic setup

(see demo)

NET
WoRrkg

Sudo mn - -topo linear,4 -> dump
Virtual network -> different namespaces
Everything else: not virtualized -> hl ps —a == sl ps —a

Can also change link capacities/delays :
iperf

Sudo mn —c

sudo mn —link tc,bw=1

iperf

from mininet.topo import Topo
\ class MyTopo(Topo): |
"Simple topology example.”

def __init_ (self):
"Create custem topo."

Initialize topology
Topo.__init_ (self)

Add hosts and switches

leftHost = self.addHost('h1')
rightHost = self.addHost('h2")
leftSwitch = self.addSwitch('s3’)
rightSwitch = self.addSwitch('s4')

Add links

self.addLink(leftHost, leftSwitch)
self.addLink(leftSwitch, rightSwitch)
self.addLink(rightSwitch, rightHost)

topos = { 'mytope’: (lambda: MyTopo()) }

Sudo mn —custom custom_topo.py —topo mytopo —test pingall

10

You can connect different switches and controllers

(see demo)

Sudo mn —switch ovsk —controller remote
New terminal -> cd pox -> ./pox.py forwarding.hub

11

Change the topology at runtime

(see demo)

Pingall -> link h1 s1 down -> pingall -> link h1 s1 up -> pingall

12

Can access each host, switch and controller with Python

(see demo)

Py ,hello” + ,world”

Py h1.IP()

13

Use of Wireshark

We can use Wireshark to debug our network

(see demo)

NET
WORKs

14

Exit -> sudo mn —c -> sudo mn —controller remote
New terminal -> sudo wireshark & -> filter of

New terminal -> ./pox.py forwarding.hub

See of hello of features_request etc in wireshark

14

Limited by single system resources
Limited to Linux kernel (e.g., portability to Windows?)
Limited to real-time

Network ossification: We see this today, main reason for SDN

15

Time for Exercise 7 and 8

Network ossification: We see this today, main reason for SDN

16

