
SOFTWARE-DEFINED NETWORKING
SESSION I

Introduction to SDN: Software-defined Networks – Session I

Advaned Computer Networks

David Koll

1

Partly based on slides of Nick McKeown, Scott Shenker, Nick
Feamster, and Jennifer Rexford

Introduction to SDN: Software-defined Networks – Session I 2

Why this course?

Introduction to SDN: Software-defined Networks – Session I

“Many solution providers
believe 2015 is the year that
SDN will truly begin to reshape
the networking landscape”
– crn.com

„Software-Defined Networks – the
counter model of the internet“
– heise.de

“November 2014: Cisco declares “game
over” for SDN competitors […], prompting
reaction from two industry groups that
the game has just begun; Alcatel-
Lucent and Juniper also virtualize their
routers […]; AT&T and others unveil […] an
alternative […].”
– networkworld.com

3

“The physical separation of the network control
plane from the forwarding plane, and where a
control plane controls several devices.”
– The Open Networking Foundation*

“The physical separation of the network control
plane from the forwarding plane, and where a
control plane controls several devices.”
– The Open Networking Foundation

What is Software-defined Networking?

Introduction to SDN: Software-defined Networks – Session I

* Google, Facebook, Microsoft, Deutsche Telekom, Verizon, Yahoo, Cisco, Citrix,
Dell, Ericsson, HP, IBM, Juniper Networks, NEC, Netgear, VMWare, …
…and various institutions from academia (e.g., Stanford, Berkeley)

4

SDN in a Nutshell

Introduction to SDN: Software-defined Networks – Session I

Taken from: http://www.opennetsummit.org/archives/apr12/site/why.html

“The physical separation of the
network control plane from the
forwarding plane, and where a
control plane controls several
devices.”
– The ONF

“The physical separation of the
network control plane from the
forwarding plane, and where a
control plane controls several
devices.”
– The ONF

5

The History behind the Hype

Going to talk about…

What are the origins of SDN?
Why do we need SDN?
Where are we now?

Introduction to SDN: Software-defined Networks – Session I

… before we dive into the
technical details of SDN

6

The History behind the Hype

The concepts behind SDN are not really new!

Scott Shenker: „[SDN is] not a revolutionary technology, [it is] just a way
of organizing network functionality.“[1]

Introduction to SDN: Software-defined Networks – Session I

[1] S. Shenker in his talk „A Gentle Introduction to Software-defined Networks“

7

The History behind the Hype

Introduction to SDN: Software-defined Networks – Session I

N
. Feam

ster et al.: „The Road to SDN
 –

An intellectural history of program
m

able
netw

orks“ ACM
 SIGCO

M
M

 Com
puter Com

m
unication Review

44.2 (2014): 87-98.

8

The History behind the Hype

Introduction to SDN: Software-defined Networks – Session I

N
. Feam

ster et al.: „The Road to SDN
 –

An intellectural history of program
m

able
netw

orks“ ACM
 SIGCO

M
M

 Com
puter Com

m
unication Review

44.2 (2014): 87-98.

9

A brief history of programmable
networks:

Active Networks

Introduction to SDN: Software-defined Networks – Session I 10

Active Networks?

• End of 1990s: network ossification (idea->deployment: 10 years!)

• Goal: opening up network control
• Envisioned method: make network devices programmable via an API

• API could be accessed via two models:
• Capsule model: code included in data packets transmitted in-band [1]
• Programmable router/switch model: code transmitted out-of-band [2]

Introduction to SDN: Software-defined Networks – Session I

[1] Wetherall, et al.: ”ANTS: a toolkit for building and dynamically deploying network protocols.” In Proceedings of IEEE OpenArch 1998.
[2] Bhattacharjee, S., Calvert, K.L. et al.: “An architecture for active networks”. In Proceedings of High-Performance Networking 1997.

11

Vorführender
Präsentationsnotizen
Network ossification: We see this today, main reason for SDN

Active Networks

Introduction to SDN: Software-defined Networks – Session I

[1] Tennenhouse, et al.: "A survey of active network research.“ IEEE Communications Magazine, 35.1 (1997): 80-86.

Co-existence of legacy routers with active routers

12

Vorführender
Präsentationsnotizen
Network ossification: We see this today, main reason for SDN

Why did active networks fail?

Introduction to SDN: Software-defined Networks – Session I

• Timing was off
• End of 1990s: no data-centers/clouds yet
• Hardware was expensive (compared to 2015)

• Conceptual mistakes:
• Programmable by end-users (security?)
• Limited interoperability

13

Vorführender
Präsentationsnotizen
Network ossification: We see this today, main reason for SDN

The Legacy of Active Networks

• Intellectual contributions of Active Networks:
• Programmable network functions
• Network virtualizations (de-multiplexing of packets according to their header)

Introduction to SDN: Software-defined Networks – Session I

[1] Wetherall, et al.: ”ANTS: a toolkit for building and dynamically deploying network protocols.” In Proceedings of IEEE OpenArch 1998.
[2] Bhattacharjee, Calvert, et al.: “An architecture for active networks”. In Proceedings of High-Performance Networking 1997.

The concepts behind SDN are not really new!
(we see both contributions in today‘s SDN)

14

Vorführender
Präsentationsnotizen
Also: innovation in applications far outpacing standardization;

A brief history of programmable
networks:

Control and data plane separation

Introduction to SDN: Software-defined Networks – Session I 15

Control and Data Plane Separation

• Early 2000s: increasing traffic volumes, network sizes
• need for traffic engineering

• But: conventional routers/switches: tight integration of data and
control planes

• Problem: Hard to debug and control router behaviour

• Goal: Traffic control and configuration should be easier
• Envisioned method: decouple control and data plane

Introduction to SDN: Software-defined Networks – Session I 16

Vorführender
Präsentationsnotizen
Network ossification: We see this today, main reason for SDN

Control and Data Plane Separation

• Mainly two innovations:
• Open interface between the control and data plane (e.g., ForCES [1])
• Logically centralized control of the network (e.g., RCP [2])

• Compared to active networks:
• Targeted at network administrators rather than end-users
• Programmability in control plane rather than in data plane
• Network wide control rather than device-level configuration

Introduction to SDN: Software-defined Networks – Session I

[1] Yang, et al. ”Forwarding and control element separation (ForCES) framework.” RFC 3746, April, 2004.
[2] Caesar, et al. "Design and implementation of a routing control platform." Proceedings of Usenix NSDI, 2005.

17

Vorführender
Präsentationsnotizen
Logically centralized: also distributed state management

RCP - Separating Interdomain Routing [1]

• Compute interdomain routes for the routers
• Input: BGP-learned routes from neighboring ASes
• Output: forwarding-table entries for each router

• Backwards compatibility with legacy routers
• RCP speaks to routers using BGP protocol

• Routers still run intradomain routing protocol
• So the routers can reach the RCP
• To reduce overhead on the RCP RCP

Autonomous
System (AS)

[1] Caesar, et al. "Design and implementation of a routing
control platform." Proceedings of Usenix NSDI, 2005.

Introduction to SDN: Software-defined Networks – Session I 18

Incremental Deployability

• Backwards compatibility
• Work with existing routers and protocols

• Incentive compatibility
• Offer significant benefits, even to the first adopters

• E.g., reducing overhead at routers

AS 3AS 2AS 1

BGP

Inter-AS Protocol
RCP RCP RCP

RCP tells routers how to forward trafficUse BGP to communicate with the legacy routersGets rid of BGP problems (e.g., routing loops)Other ASes can deploy an RCP independentlyASes with RCPs can cooperate for new featuresASes can upgrade to new routing protocol… while using BGP to control the legacy routers

Introduction to SDN: Software-defined Networks – Session I 19

Vorführender
Präsentationsnotizen
- ex: no more routing loops

Example: Maintenance Dry-Out

•Planned maintenance on an edge router
• Drain traffic off of an edge router
• Before bringing it down for maintenance

d

egress 1

egress 2

RCP
use egress 2

Introduction to SDN: Software-defined Networks – Session I 20

Example: Egress Selection

•Customer-controlled egress selection
• Multiple ways to reach the same destination
• Giving customers control over the decision

egress 1

egress 2

data center 1

data center 2

hot-potato routing

RCP
use egress 1

customer
sites

Introduction to SDN: Software-defined Networks – Session I 21

RCP – The big “BUT”

•RCP still uses BGP, a single routing protocol
• This is not what we need

• However, we can learn from it!

Introduction to SDN: Software-defined Networks – Session I 22

The Legacy of the Separation

• Recall the two innovations:
• Open interface between the control and data plane (e.g., ForCES [1])
• Logically centralized control of the network (e.g., RCP [2])

Introduction to SDN: Software-defined Networks – Session I

[1] Yang, et al. ”Forwarding and control element separation (ForCES) framework.” RFC 3746, April, 2004.
[2] Caesar, et al. "Design and implementation of a routing control platform." Proceedings of Usenix NSDI, 2005.

The concepts behind SDN are not really new!
(we see both contributions in today‘s SDN)

23

Vorführender
Präsentationsnotizen
Logically centralized: also distributed state management

A brief history of programmable
networks:

Network virtualization

Introduction to SDN: Software-defined Networks – Session I 24

Network Virtualization?

• Abstraction of a network that is decoupled from theunderlying physical
network (e.g., VLANs)

Introduction to SDN: Software-defined Networks – Session I

Microsoft Technet.: https://gallery.technet.microsoft.com/scriptcenter/Simple-Hyper-V-Network-d3efb3b8

25

Vorführender
Präsentationsnotizen
Network ossification: We see this today, main reason for SDN

Network Virtualization

Introduction to SDN: Software-defined Networks – Session I

First steps:
• Overlay networks as virtual networks on top of legacy technology

• Own control protocol, encapsulation over legacy network (tunneling)
• MBone [1] (for multicast), 6Bone [2] (for IPv6)

In contrast to active networks, overlay networks
do not require any support from network equipment

Later:
Virtual networks inside the underlying network (e.g., VINI [3])
[1] Almeroth et al, "Multicast group behavior in the Internet's multicast backbone (MBone)." IEEECommunications Magazine, IEEE35.6
[2] Fink et al, 6bone (IPv6 testing address allocation) phaseout. RFC 3701, March, 2004.
[3] Bavier, et al. "In VINI veritas: realistic and controlled network experimentation." ACM CCR. Vol. 36. No. 4. ACM, 2006.

26

Vorführender
Präsentationsnotizen
Logically centralized: also distributed state management

How to Validate an Idea?

• Fixed infrastructure, shared among many experiments
• Runs real routing software
• Exposes realistic network conditions
• Gives control over network events
• Carries traffic on behalf of real users

Simulation

Emulation

Small-scale
experiment

Live
deployment

VINI

Introduction to SDN: Software-defined Networks – Session I 27

Vorführender
Präsentationsnotizen
Suppose you have an idea for a new network architecture or architectural feature… how do you validate it?Your ultimate goal is a deployment in the real world.Typically you start with running simulations, say in ns-2Then you build a prototype and run in an emulation environment like Emulab or ModelNet.Then you may deploy your prototype in your lab and leave it running for a while; maybe even use it yourself.But there’s still a big gap between running in the lab and getting your research adopted.Clearly there’s more work to do.For one thing, you probably still don’t know much about how your research would actually perform in the wild, at scale.We’re proposing a new experimental infrastructure to help fill the gap, called VINI.VINI:

Fixed Infrastructure

[3
] B

av
ie

r,
"V

IN
I a

nd
 it

s f
ut

ur
e

di
re

ct
io

ns
”

ht
tp

:/
/w

w
w

.fp
7-

fe
de

ric
a.

eu
/p

re
s_

ev
en

ti/
VI

N
I_

TN
C2

00
8.

pp
t

Introduction to SDN: Software-defined Networks – Session I 28

Vorführender
Präsentationsnotizen
Fixed infrastructure, because we do not want the topology to change during experiments

Shared Infrastructure

Introduction to SDN: Software-defined Networks – Session I 29

Vorführender
Präsentationsnotizen
Building a VINI requires a big investment, so it has to be shared.At the same time, we expect some VINI experiments to be long-running.So there can be a red experiment deployed on VINI, and a blue experiment on the same nodes.A VINI isolates experiments by giving each the illusion of dedicated hardware and resources.

Flexible Topology

Introduction to SDN: Software-defined Networks – Session I 30

Vorführender
Präsentationsnotizen
Infrastructure is fixed, but the topology is not necessarily fixed (red experiment: uses all infrastructure nodes, blue: does not)

Network Events

Introduction to SDN: Software-defined Networks – Session I 31

Vorführender
Präsentationsnotizen
VINI can inject network events into the infrastructure.If a physical link fails, this failure is exposed to all topologies that traverse the link.So the red topology sees this link fail, and if the blue link happened to traverse that physical wire, then it would fail as well.Link failures don’t happen often, so it’s desirable to inject our own failures.So the red experiment could inject a link failure and not affect the blue experiment.

VINI: Control/Data Plane Separation

• Interfaces tunnels
• Click UDP tunnels correspond to

UML network interfaces

• Filters
• “Fail a link” by blocking packets

at tunnel

XORP
(routing protocols)

eth1 eth3eth2eth0

Click

Packet
Forward
Engine

Control

Data
UmlSwitch
element

Tunnel table
Filters

Introduction to SDN: Software-defined Networks – Session I 32

The Legacy of Network Virtualization

• Three main ideas
• Separate service from infrastructure
• Have multiple controllers (virtual networks) for the same switch
• Logical network topologies

Introduction to SDN: Software-defined Networks – Session I

The concepts behind SDN are not really new!
(we see these contributions in today‘s SDN)

33

Vorführender
Präsentationsnotizen
Logically centralized: also distributed state management

Control and Data Plane Separation –
What is SDN actually?

Introduction to SDN: Software-defined Networks – Session I 34

SDN: Control and Data Plane Separation

logic for controlling the forwarding elements
routing protocols (e.g., BGP, OSPF), middlebox configuration, etc.

forward data based on rules set by the control logic
IP forwarding, layer 2 switching, etc.

Today, routers implement both

Introduction to SDN: Software-defined Networks – Session I

Control Plane

Data Plane

35

Why separate?

Currently, routers implement both:

What do we gain from separating control and data plane?

Introduction to SDN: Software-defined Networks – Session I

Ta
ke

n
fr

om
: h

tt
p:

//
w

w
w

.o
pe

nn
et

su
m

m
it.

or
g/

ar
ch

iv
es

/a
pr

12
/s

ite
/w

hy
.h

tm
l

36

Key to Internet Success: Layers

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

Introduction to SDN: Software-defined Networks – Session I 37

Why Is Layering So Important?

• It provides abstraction: decomposed delivery into
fundamental components

• Independent but compatible innovation at each layer

• A practical success (it still works!)

Introduction to SDN: Software-defined Networks – Session I 38

The Problem in Computer Networks

• Layers only deal with the data plane

• We have no powerful control plane abstractions!

Introduction to SDN: Software-defined Networks – Session I 39

Control Plane Abstractions

Introduction to SDN: Software-defined Networks – Session I 40

The Problem in Computer Networks

• Many different control plane mechanisms

• Designed from scratch for specific goal

• Variety of implementations
• Globally distributed: routing algorithms

• Manual/scripted configuration: ACLs, VLANs

• Centralized computation: Traffic engineering

• Network control plane is a complicated mess!

Introduction to SDN: Software-defined Networks – Session I 41

The Problem in Computer Networks

• Complexity has increased to “unmanageable”
levels

• Consider datacenters:
• 100,000s machines, 10,000s switches
• 1000s of customers

• Each with their own logical networks: ACLs, VLANs, etc

• Way beyond what we can handle
• Leads to brittle, ossified configurations
• Inefficient as well

Introduction to SDN: Software-defined Networks – Session I 42

Example: Datacenter Networks

• Complexity has increased to “unmanageable”
levels

• Consider datacenters:
• 100,000s machines, 10,000s switches
• 1000s of customers

• Each with their own logical networks: ACLs, VLANs, etc

• Way beyond what we can handle
• Leads to brittle, ossified configurations
• Probably inefficient too

Introduction to SDN: Software-defined Networks – Session I 43

Example: Datacenter Networks

• Complexity has increased to “unmanageable”
levels

Introduction to SDN: Software-defined Networks – Session I 44

The Problem is not only Complexity

• Closed equipment
• Software bundled with hardware
• Vendor-specific interfaces

• Over specified
• Slow protocol standardization

• Few people can innovate
• Equipment vendors write the code
• Long delays to introduce new features

Introduction to SDN: Software-defined Networks – Session I 45

Enter SDN

• Today, routers implement both planes
• They forward packets
• And run the control plane software

• SDN networks
• Data plane implemented by switches

• Switches act on local forwarding state
• Control plane implemented by controllers

• All forwarding state computed by SDN platform
• Open protocols!

• A technical change with broad implications

Introduction to SDN: Software-defined Networks – Session I 46

Enter SDN

Control Program

Network OS

Global Network View

e.g. routing,
access control

Introduction to SDN: Software-defined Networks – Session I 47

Another View

ht
tp

:/
/w

w
w

.n
et

w
or

kc
om

pu
tin

g.
co

m
/n

et
w

or
ki

ng
/s

ea
rc

hi
ng

-fo
r-

an
-s

dn
-d

ef
in

iti
on

-
w

ha
t-

is-
so

ft
w

ar
e-

de
fin

ed
-n

et
w

or
ki

ng
/

Introduction to SDN: Software-defined Networks – Session I 48

Anology

• You are lost in a city and are trying to reach a
destination

• Todays networks: ask other people you meet to
obtain information (routing protocols)

• SDN: pull out your cellphone and start Google
maps – it will calculate the route for you

Introduction to SDN: Software-defined Networks – Session I 49

Changes

• Less vendor lock-in
• Can buy HW/SW from different vendors

• Changes are easier
• Can test components separately

• HW has to forward
• Can simulate controller
• Can do verification on logical policy

• Can change topology and policy independently
• Greater rate of innovation

Introduction to SDN: Software-defined Networks – Session I 50

Challenges of the Separation

• Talked a lot about the opportunities

• What about the challenges?

Introduction to SDN: Software-defined Networks – Session I 51

Practical Challenges

• Scalability
• Control elements responsible for many routers

• Response time
• Delays between control elements and routers

• Reliability
• Surviving failures of control elements and routers

• Consistency
• Ensuring multiple control elements behave consistently

• Security
• Network vulnerable to attacks on control elements

• Interoperability
• Legacy routers and neighboring domains

Introduction to SDN: Software-defined Networks – Session I 52

Example - Scalability

• Take routing: the controller has to make routing
decisions for a lot of routers

• Potentially 1000s

• Also has to store these routes
• a lot of routing tables

• Single controller node for this task?
• Compare with current standard OSPF: distributed

Introduction to SDN: Software-defined Networks – Session I 53

Current Status of SDN

• SDN widely accepted as “future of networking”
• ~1000 engineers at latest Open Networking Summit
• Much more acceptance in industry than in academia

• Insane level of SDN hype, and still:
• SDN doesn’t work miracles, merely makes things easier

Introduction to SDN: Software-defined Networks – Session I 54

Current Status of SDN

• Most innovations in southbound interface,
controllers, northbound interface, and
applications

• OpenFlow (as ONE example of the sb interface)
• NOX, POX, ONOS, etc.
• Pyretic, Frenetic, etc.

• But: also changes in network devices
• Most global players offer SDN switches now

Introduction to SDN: Software-defined Networks – Session I 55

Examples of Current SDN Hardware
NEC IP8800Juniper MX-series

HP Procurve 5400

WiMax (NEC)

Netgear 7324

Examples of Current SDN Hardware

SDN = Open, also in HW

Onie

The Open Network Install Environment (ONIE) is an
open source initiative that defines an open "install
environment" for bare metal network switches. ONIE
enables a bare metal network switch ecosystem where
end users have a choice among different network
operating systems.

In other words: Network OS Bios

Examples of HW

Examples of HW

Up Next

Introduction to SDN: Software-defined Networks – Session I 63

OpenFlow – The de-facto standard
Southbound interface

64Introduction to SDN: Software-defined Networks – Session I

What is OpenFlow

OpenFlow is one implementation of the Southbound
interface in SDN

OpenFlow is NOT SDN
OpenFlow is NOT THE ONLY Southbound interface

(see, e.g., Cisco OpFlex)

OpenFlow Consortium

http://OpenFlowSwitch.org

• Free membership for all researchers
• Whitepaper, OpenFlow Switch Specification, Reference

Designs
• Licensing: Free for research and commercial use

Components of OpenFlow Network

• Controller
• OpenFlow protocol messages
• Controlled channel
• Processing

• Pipeline Processing
• Packet Matching
• Instructions & Action Set

• OpenFlow switch
• Secure Channel (SC)
• Flow Table

• Flow entry

OpenFlow

• Communication between the controller and the
network devices (i.e., switches)

From the specification by the Open Networking Foundation:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.4.0.pdf (Oct 2013)

OpenFlow – A SDN Protocol

• Main components: Flow and Group Tables
• Controller can manipulate these tables via the OpenFlow

protocol (add, update, delete)
• Flow Table: reactively or proactively defines how

incoming packets are forwarded
• Group Table: additional processing

OpenFlow – Switches

• Two different versions of an OpenFlow Switch
• OF-only (packets can only be processed by OF tables) and

OF-hybrid (allow optional normal Ethernet handling (see
CN lecture))

• OF-only: all packets go through a pipeline
• Each pipeline contains one or multiple flow tables with

each containing one or multiple flow entries

OpenFlow – Switches

• Incoming packets are matched against Table 0 first
• Find highest priority match and execute instructions

(might be a Goto-Table instruction)
• Goto: Only possible forward

OpenFlow – Switches

• Flow Table entry structure:

• Match fields: where matching applies
• Priority: matching precedence of flow entry
• Counters: update on packet match with

entry
• Instructions: what to do with the packet
• Timeout: max idle time of flow before

ending

OpenFlow – Switches

• Flow Table entry structure:

• Match fields: where matching applies (i.e., ingress
port, packet (IP, eth) headers, etc.)

• A flow entry with all match fields as wildcard and
priority 0: table miss entry

OpenFlow – Switches

• If no match in table: table miss
• Handling: depends on table configuration –

might be drop packet, forward to other table,
forward to controller

• Forward to controller allows to set up a flow entry
(i.e., at the beginning of a flow)

Examples

Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

00:20.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * * * * 22 drop

75

Examples

Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * 5.6.7.8 * * * port6

VLAN Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * vlan1 * * * * *
port6,
port7,
port9

00:1f..

76

OpenFlow - Matching

OpenFlow – Switches

• Group Table entry structure:

• Group Identifier: 32-bit ID to uniquely define group
on the switch (locally)

• Group Type: indirect/all/fast failover/select
• Specifies which action bucket is executed

• Counters: update on packet processed
• Action Buckets: ordered list of buckets, each

containing a set of instructions

OpenFlow – Switches

• Group Table entry structure:

• Group Tables allow for more complex forwarding
• E.g., multicast: use all group type to execute all action

buckets (packet will be cloned for each bucket, and then
forwarded through the instruction set)

OpenFlow – OpenFlow Channel

• Different message types available:
• Controller-to-Switch, Asynchronous or

Symmetric
• Controller-to-Switch:

• Lets the controller control the switch
• E.g., Modify-State command to

manipulate flow tables
• Asynchronous:

• Switch-to-controller requests
(e.g., at table miss)

• Symmetric:
• May be sent from both ends (e.g.,

echo command)

OpenFlow - Example

OpenFlow - Example

SRC: H2
DST: H4

OpenFlow - Example

SRC: H2
DST: H4 ?

OpenFlow - Example

SRC: H2
DST: H4 Packet-

IN

OpenFlow - Example

SRC: H2
DST: H4 Packet-OUT

Action: eth2

OpenFlow - Example

SRC: H2
DST: H4

OpenFlow - Example

SRC: H2
DST: H4

OpenFlow - Example

SRC: H2
DST: H4 ?

OpenFlow - Example

SRC: H2
DST: H4 !

OpenFlow - Example

SRC: H2
DST: H4

OpenFlow Controllers

91Introduction to SDN: Software-defined Networks – Session I

OpenFlow Controllers

…and many more: Beacon, Trema, OpenContrail, POF, etc.

That‘s a Lot of Controllers!?

Which controller should I use for what problem?

Introduction to SDN: Software-defined Networks – Session I 93

„There are almost as many controllers for SDNs as
there are SDNs“ – Nick Feamster

Which controller?

Concept?
Architecture?

Programming language and model?
Advantages / Disadvantages?

Learning Curve?
Developing Community?
Type of target network?

Introduction to SDN: Software-defined Networks – Session I 94

NOX [1]

• The first controller
• Open source
• Stable

• NOX-Classic: C++/Python

• „New“ NOX: C++ only
• OF version supported: 1.0

Introduction to SDN: Software-defined Networks – Session I 95

[1] Gude et al. "NOX: towards an operating system for networks." ACM SIGCOMM CCR 38.3 (2008): 105-110.

NOX Architecture

Introduction to SDN: Software-defined Networks – Session I 96

switches and
attached servers

Controller
maintains a

network view

OpenFlow is
used to control

switches

Granularity of
Control: Per

Flow

[1] Gude et al. "NOX: towards an operating system for networks." ACM SIGCOMM CCR 38.3 (2008): 105-110.

NOX Architecture

Programming model: Controller listens for OF
events

Programmer writes action handlers for events

Introduction to SDN: Software-defined Networks – Session I 97

When to use NOX

• Need to use low-level semantics of OpenFlow
• NOX does not come with many abstractions

• Need of good performance (C++)
• E.g.: production networks

Introduction to SDN: Software-defined Networks – Session I 98

POX [1]

• POX = NOX in Python

• Advantages:
• Widely used, maintained and supported
• Relatively easy to write code for

• Disadvantage:
• Performance (Python is slower than C++)
• But: can feed POX ideas back to NOX for production use

Introduction to SDN: Software-defined Networks – Session I 99

[1] Mccauley, J. "Pox: A python-based openflow controller.“ http://www.noxrepo.org/pox/about-pox/

POX

Introduction to SDN: Software-defined Networks – Session I 100

0 20.000 40.000 60.000

NOX-C++

NOX-Python

POX

cbench "throughput" (flows per
second)

0 40.000 80.000

NOX-C++

NOX-Python

POX

cbench “latency” (flows per second)

http://www.noxrepo.org/pox/about-pox/

When to use POX

• Learning, testing, debugging, evaluation

In this class :)

• Probably not in large production networks

Introduction to SDN: Software-defined Networks – Session I 101

Just one more: Floodlight [1]

• Java

• Advantages:
• Documentation,
• REST API conformity
• Production-level performance

• Disadvantage:
• Steep learning curve

Introduction to SDN: Software-defined Networks – Session I 102

[1] http://www.projectfloodlight.org/floodlight/

Floodlight: Users

Introduction to SDN: Software-defined Networks – Session I 103

Floodlight Adopters:
• University research
• Networking vendors
• Users
• Developers / startups

Floodlight Overview

Introduction to SDN: Software-
defined Networks – Session I

104

• Floodlight is a collection of modules

• Some modules (not all) export
services

• All modules in Java

• Rich, extensible REST API
DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

Taken from: Cohen et al, “Software-Defined Networking and the Floodlight
Controller”, available at http://de.slideshare.net/openflowhub/floodlight-
overview-13938216

Floodlight Overview

Introduction to SDN: Software-defined Networks – Session I 105

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

• Computes shortest path using Dijsktra
• Keeps switch to cluster mappings

 Installs flow mods for end-to-end routing

 Handles island routing

 Tracks hosts on the network

 MAC -> switch,port, MAC->IP, IP->MAC

 Implements via Restlets (restlet.org)

 Modules export RestletRoutable

 Supports the insertion and removal of static flows

 REST-based API

 Maintains state of links in network

 Sends out LLDPs

 Create layer 2 domain defined by MAC address

 Translates OF messages to Floodlight events
 Managing connections to switches via Netty

Ta
ke

n
fr

om
: C

oh
en

 e
t a

l,
“S

of
tw

ar
e-

De
fin

ed
 N

et
w

or
ki

ng
 a

nd
 th

e
Fl

oo
dl

ig
ht

Co

nt
ro

lle
r”

, a
va

ila
bl

e
at

 h
tt

p:
//

de
.s

lid
es

ha
re

.n
et

/o
pe

nf
lo

w
hu

b/
flo

od
lig

ht
-

ov
er

vi
ew

-1
39

38
21

6

Floodlight Programming Model

Introduction to SDN: Software-defined Networks – Session I 106

Switch

Switch

vSwitch

IFloodlight-
Module

External
Application

IFloodlightModule

 Java module that runs as part of Floodlight

 Consumes services and events exported by other modules
 OpenFlow (ie. Packet-in)
 Switch add / remove
 Device add /remove / move
 Link discovery

External Application

 Communicates with Floodlight via REST

Floodlight Controller

Switch

Taken from: Cohen et al, “Software-Defined Networking and the Floodlight
Controller”, available at http://de.slideshare.net/openflowhub/floodlight-
overview-13938216

Floodlight Modules

Introduction to SDN: Software-defined Networks – Session I 107

Network State

List Hosts

List Links

List Switches

GetStats (DPID)

GetCounters
(OFType…)

Static Flows

Add Flow

Delete Flow

List Flows

RemoveAll Flows

Virtual Network

Create Network

Delete Network

Add Host

Remove Host

User Extensions

…

Floodlight Controller

Switch

Switch

vSwitch
Switch

Ta
ke

n
fr

om
: C

oh
en

 e
t a

l,
“S

of
tw

ar
e-

De
fin

ed
 N

et
w

or
ki

ng
 a

nd
 th

e
Fl

oo
dl

ig
ht

Co

nt
ro

lle
r”

, a
va

ila
bl

e
at

 h
tt

p:
//

de
.s

lid
es

ha
re

.n
et

/o
pe

nf
lo

w
hu

b/
flo

od
lig

ht
-

ov
er

vi
ew

-1
39

38
21

6

When to use Floodlight

• If you know JAVA
• If you need production-level performance
• Have/want to use REST API

Introduction to SDN: Software-defined Networks – Session I 108

Network Virtualization with
OpenFlow

109Introduction to SDN: Software-defined Networks – Session I

Virtualizing OpenFlow

• Network operators “Delegate” control of subsets of
network hardware and/or traffic to other network
operators or users

• Multiple controllers can talk to the same set of
switches

• Imagine a hypervisor for network equipments
• Allow experiments to be run on the network in

isolation of each other and production traffic

Virtualizing OpenFlow

https://gallery.technet.microsoft.com/scriptcenter/Simple-Hyper-V-Network-d3efb3b8

Virtualization: VLANs

Normal L2/L3 Processing
Production VLANs

Research VLAN 1

Research VLAN 2

112

Vorführender
Präsentationsnotizen
Just virtualizing a particular algorithm – L2 forwarding/processing

FlowVisor [1]

• A network hypervisor developed by Stanford
• A software proxy between the forwarding and

control planes of network devices

[1
] S

he
rw

oo
d,

 e
t a

l.
"F

lo
w

vi
so

r:
A

ne
tw

or
k

vi
rt

ua
liz

at
io

n
la

ye
r."

O
pe

nF
lo

w
Sw

itc
h

Co
ns

or
tiu

m
, T

ec
h.

 R
ep

(2
00

9)
.

OpenFlow
Protocol

OpenFlow
FlowVisor & Policy Control

Broadcast Multicast

OpenFlow
Protocol

http
Load-balancer

FlowVisor-based Virtualization

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Separation not only
by VLANs, but any

L1-L4 pattern

dl_dst=FFFFFFFFFFFF tp_src=80, or
tp_dst=80

114

Slicing Policies

• The policy specifies resource limits for each slice:

– Link bandwidth
– Maximum number of forwarding rules
– Topology
– Fraction of switch/router CPU

– FlowSpace: which packets does the slice
control?

Vorführender
Präsentationsnotizen
The policies specify resource limits.

FlowVisor Resource Limits

• FV assigns hardware resources to “Slices”

• Topology
• Network Device or Openflow Instance (DPID)
• Physical Ports

• Bandwidth
• Each slice can be assigned a per port queue with a fraction of

the total bandwidth

FlowVisor Resource Limits (cont.)

• FV assigns hardware resources to “Slices”

• CPU
• Employs Course Rate Limiting techniques to keep new flow

events from one slice from overrunning the CPU

• Forwarding Tables
• Each slice has a finite quota of forwarding rules per device

FlowVisor FlowSpace

• FlowSpace is defined by a collection of packet headers
and assigned to “Slices”

• Source/Destination MAC address
• VLAN ID
• Ethertype
• IP protocol
• Source/Destination IP address
• ToS/DSCP
• Source/Destination port number

Use Case: VLAN Partitioning

• Basic Idea: Partition Flows based on Ports and VLAN Tags
• Traffic entering system (e.g. from end hosts) is tagged
• VLAN tags consistent throughout substrate

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * 1,2,3 * * * * *

* * * * 7,8,9 * * * * *

* * * * 4,5,6 * * * * *

Dave

Larry

Steve

Use Case: Content Distribution Network

• Basic Idea: Build a CDN where you control the entire network
• All traffic to or from CDN IP space controlled by

Experimenter
• All other traffic controlled by default routing
• Topology is the entire network

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * * 84.65.* * * * *

* * * * * * 84.65.* * * *

* * * * * * * * * *

From CDN
To CDN

Default

FlowSpace: Maps Packets to Slices

Taken from: Rob Sherwood’s presentation at ONS:
http://www.opennetsummit.org/archives/apr12/sherwood-mon-flowvisor.pdf

FlowVisor Slicing Policy

• FlowVisor intercepts OpenFlow messages from
devices

• Send control plane messages to the slice controller only if
source is in slice topology.

• Rewrite OpenFlow feature negotiation messages so the
slice controller only sees the ports in it’s slice

• Port up/down messages are pruned and only forwarded
to affected slices

FlowVisor Slicing Policy

• FlowVisor intercepts OpenFlow messages from
controllers

• Rewrites flow insertion, deletion & modification rules so
they don’t violate the slice definition

• Flow definition – ex. Limit Control to HTTP traffic only
• Actions – ex. Limit forwarding to only ports in the slice

FlowVisor Slicing Policy

• FlowVisor intercepts OpenFlow messages from
controllers

• Expand Flow rules into multiple rules to fit policy
• Flow definition – ex. If there is a policy for John’s HTTP traffic

and another for Uwe’s HTTP traffic, FV would expand a single
rule intended to control all HTTP traffic into 2 rules.

• Actions – ex. Rule action is send out all ports. FV will create one
rule for each port in the slice.

• Returns “action is invalid” error if trying to control a port
outside of the

FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor

OpenFlow

OpenFlow

Packet

Exception

Policy Check:
Is this rule
allowed?

Policy Check:
Who controls
this packet?

Full Line Rate
Forwarding

Rule

Packet

Ta
ke

n
fr

om
: R

ob
 S

he
rw

oo
d’

s p
re

se
nt

at
io

n
at

 O
N

S:
ht

tp
:/

/w
w

w
.o

pe
nn

et
su

m
m

it.
or

g/
ar

ch
iv

es
/a

pr
12

/s
he

rw
oo

d-
m

on
-fl

ow
vi

so
r.p

df

FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor

OpenFlow

OpenFlow

Packet

Exception

Policy Check:
Is this rule
allowed?

Policy Check:
Who controls
this packet?

Rule

Error

Ta
ke

n
fr

om
: R

ob
 S

he
rw

oo
d’

s p
re

se
nt

at
io

n
at

 O
N

S:
ht

tp
:/

/w
w

w
.o

pe
nn

et
su

m
m

it.
or

g/
ar

ch
iv

es
/a

pr
12

/s
he

rw
oo

d-
m

on
-fl

ow
vi

so
r.p

df

	Software-defined Networking �Session I
	Foliennummer 2
	Why this course?
	What is Software-defined Networking?
	SDN in a Nutshell
	The History behind the Hype
	The History behind the Hype
	The History behind the Hype
	The History behind the Hype
	Foliennummer 10
	Active Networks?
	Active Networks
	Why did active networks fail?
	The Legacy of Active Networks
	Foliennummer 15
	Control and Data Plane Separation
	Control and Data Plane Separation
	RCP - Separating Interdomain Routing [1]
	Incremental Deployability
	Example: Maintenance Dry-Out
	Example: Egress Selection
	RCP – The big “BUT”
	The Legacy of the Separation
	Foliennummer 24
	Network Virtualization?
	Network Virtualization
	How to Validate an Idea?
	Fixed Infrastructure
	Shared Infrastructure
	Flexible Topology
	Network Events
	VINI: Control/Data Plane Separation
	The Legacy of Network Virtualization
	Foliennummer 34
	SDN: Control and Data Plane Separation
	Why separate?
	Key to Internet Success: Layers
	Why Is Layering So Important?
	The Problem in Computer Networks
	Control Plane Abstractions
	The Problem in Computer Networks
	The Problem in Computer Networks
	Example: Datacenter Networks
	Example: Datacenter Networks
	The Problem is not only Complexity
	Enter SDN
	Enter SDN
	Another View
	Anology
	Changes
	Challenges of the Separation
	Practical Challenges
	Example - Scalability
	Current Status of SDN
	Current Status of SDN
	Foliennummer 56
	Examples of Current SDN Hardware
	Examples of Current SDN Hardware
	SDN = Open, also in HW
	Onie
	Examples of HW
	Examples of HW
	Up Next
	Foliennummer 64
	What is OpenFlow
	OpenFlow Consortium
	Components of OpenFlow Network
	OpenFlow
	OpenFlow – A SDN Protocol
	OpenFlow – Switches
	OpenFlow – Switches
	OpenFlow – Switches
	OpenFlow – Switches
	OpenFlow – Switches
	Examples
	Examples
	OpenFlow - Matching
	OpenFlow – Switches
	OpenFlow – Switches
	OpenFlow – OpenFlow Channel
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	OpenFlow - Example
	Foliennummer 91
	OpenFlow Controllers
	That‘s a Lot of Controllers!?
	Which controller?
	NOX [1]
	NOX Architecture
	NOX Architecture
	When to use NOX
	POX [1]
	POX
	When to use POX
	Just one more: Floodlight [1]
	Floodlight: Users
	Floodlight Overview
	Floodlight Overview
	Floodlight Programming Model
	Floodlight Modules
	When to use Floodlight
	Foliennummer 109
	Virtualizing OpenFlow
	Virtualizing OpenFlow
	Virtualization: VLANs�
	FlowVisor [1]	
	Foliennummer 114
	Slicing Policies
	FlowVisor Resource Limits
	FlowVisor Resource Limits (cont.)
	FlowVisor FlowSpace
	Use Case: VLAN Partitioning
	Use Case: Content Distribution Network
	FlowSpace: Maps Packets to Slices
	FlowVisor Slicing Policy
	FlowVisor Slicing Policy
	FlowVisor Slicing Policy
	FlowVisor Message Handling
	FlowVisor Message Handling

