Selected Topics of Pervasive Computing

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

29.01.2014

Overview and Structure

30.10.2013	Organisational
30.10.3013	Introduction
06.11.2013	Classification methods (Feature extraction, Metrics, machine learning)
13.11.2013	Classification methods (Basic recognition, Bayesian, Non-parametric)
20.11.2013	_
27.11.2013	_
04.12.2013	-
11.12.2013	Classification methods (Linear discriminant, Neural networks)
18.12.2013	Classification methods (Sequential, Stochastic)
08.01.2014	Features from the RF channel (Effects of the mobile radio channel)
15.01.2014	Security from noisy data (Encryption schemes, Fuzzy extractors)
22.01.2014	Security from noisy data (Error correcting codes, PUFs, Applications)
29.01.2014	Context prediction (Definitions)
05.02.2014	Context prediction (Algorithms and applications)

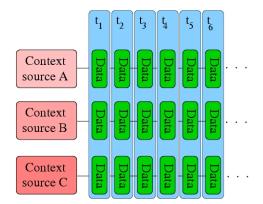
Outline

Context prediction

Exact sequence matching

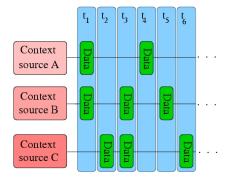
IPAM

ONISI

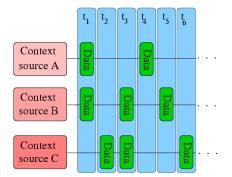

Alignment methods

Prediction with alignment methods

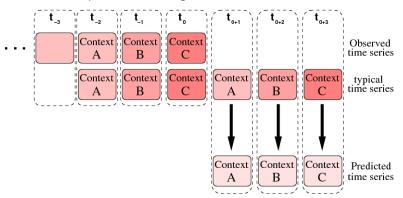
Conclusion


Multi-dimensional time series

- Idealised: Context data sources synchonised
 - Very unlikely


Multi-dimensional time series

- Realistic scneario: No synchonisation between context sources
 - Context sources push information when specific events occur
 - Duty cycling (time differs between context sources)

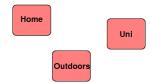

Multi-dimensional time series

- Question: Which context values for a given time interval?
 - Interpolation of context values?
 - Last value measured?

Relaxation of typical behaviour patterns

Exact sequence matching

Relaxation of typical behaviour patterns

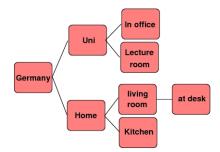

- Exact pattern matching not suited in most ubiquitous scenarios
 - Behaviour patterns do not reoccur 'exactly' but approximately
 - E.g. the route and time to some location will differ slightly for several times the route is taken.
- Approximate matching is more difficult:
 - Where to draw the line?
 - When are two time series considered as approximately matching and when not
 - Inherently dependent on given scenario
 - Typically solved by heuristic approach/metric

Context data types

- Context can have various data types
 - Nominal
 - Ordinal
 - Hierarchical
 - Numerical
- In multi-dimensional time series also multi-type contexts possible
- Most algorithms can only process some of these data types
 - Not applicable in scenarios where other data types are measured

Context data types

- Nominal contexts
 - =
 - ≠


Context data types

- Ordinal contexts
 - **o** <
 - >
 - =

Context data types

- Hierarchical contexts
 - Sub-contexts and parent contexts
 - Contexts might be contained in others

Context data types

- Numerical contexts
 - Real valued, integer valued contexts
 - Complex mathematical operations possible
 - Best suited for context processing

Context data types

Algorithm	Ordinal contexts	Nominal contexts	Hierarchical contexts	Numerical contexts
BN	+	+	+	+
SVM	-	-	-	+
KM	-	-	-	+
MM	+	+	+	+
NN	+	+	+	+
NNS	-	$(+)^{7}$	(+)	+
SOM	-	$(+)^{7}$	$(+)^{7}$	+
PM	+	+	+	+
AP	$(+)^{7}$	$(+)^{7}$	$(+)^{7}$	+
ARMA	-	-	-	+
Kalman filters	-	-	-	+

Outline

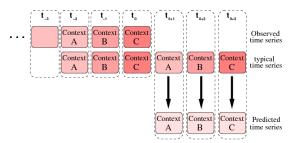
Simple prediction approaches: ONISI and IPAM

Context prediction

Exact sequence matching

IPAM

ONISI

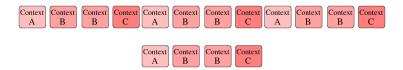

Alignment methods

Prediction with alignment methods

Conclusion

Introduction

- File a given sequence for the exact occurrence of a sub-sequence
- 'Pattern Matching' or 'String Matching'¹
- Easily extended to context prediction:
 - Prediction ≡ continuation of matched sequence



Richard O. Duda, Peter E. Hard and David G. Stork, Pattern Classification, Wiley-Interscience, 2nd edition, 2001.

Notation

Strings and patterns

A string is a sequence of letters such as 'AGCTTCGAATC'. Context patterns can be represented as strings when each context is assigned a letter.

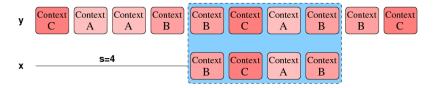
Substring

Any contiguous string that is part of another string is called a substring. For example, 'GCT' is a substring of 'AGCTTC'.

Exact sequence matching Notation

String matching

Given two Strings x and y, string matching is the problem to determine whether x is a substring of y and, if so, where it appears.


Edit distance

Given two strings \mathbf{x} and \mathbf{y} , the edit distance describes the minimum number of basic operations – character insertions, deletions and exchanges – needed to transform \mathbf{x} into \mathbf{y} .

Exact sequence matching String matching

Basic string matching problem

For two strings ${\bf x}$ and ${\bf y}$, determine whether a shift s at which the string ${\bf x}$ is perfectly matching with each caracter of ${\bf y}$ beginning at position s+1.

String matching

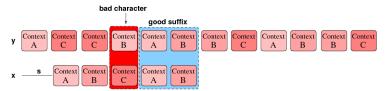
Straightforward approach

Subsequently test each possible shift s

Example

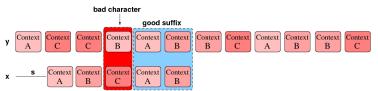
```
1 begin initialise \Sigma x,y,n=length[y], m=length[x] 2 s \leftarrow 0 3 while s \leq n-m 4 if x[1..m]=y[s+1\cdots s+m] 5 then print 'pattern occurs at shift' s s \leftarrow s+1 7 return 8 end
```

- The straightforward algorithm is, however, far from optimal
- Worst case runtime:
 - $\Theta((n-m+1)m)$
- Problem: Information known from one candidate shift s is not exploited for the subsequent candidate shift

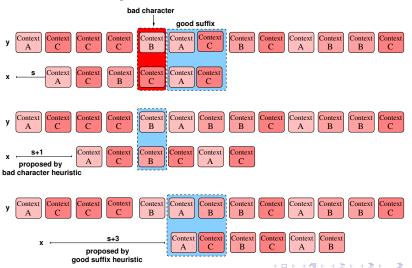

String matching

```
Boyer-Moore string matching
```

```
begin initialise \Sigma x,y,n=length[y], m=length[x]
2
       F(x) \leftarrow last-occurrence function
3
       G(x) \leftarrow good-suffic function
4
       s \leftarrow 0
5
       while s < n - m
6
          do i \leftarrow m
           while j > 0 and x[j] = y[s+j]
              do i \leftarrow i - 1
8
9
           if i = 0
               then print 'pattern occurs at shift' s
10
                   s \leftarrow s + G(0)
11
                else s \leftarrow s + max[G(j), j - F(v[s+i])]
12
13
        return
14 end
```


Last occurrence function

- Table containing every letter in the alphabet
- Plus position of its rightmost occurrence in x
- Example:
 - A, 4
 - B, 5
 - C, 3
- Computation only once
 - Does not significantly impact the runtime



Good suffix function

- Creates table that for each suffix gives location of second right-most occurrence in x
- Example:
 - B, 2
 - AB, 1
 - CAB, -
 - BCAB, -
 - ABCAB, -
- Computation only once
 - Does not significantly impact the runtime

Bad character heuristic and good suffix heuristic

Outline

Simple prediction approaches: ONISI and IPAM

Context prediction

Exact sequence matching

IPAM

ONISI

Alignment methods

Prediction with alignment methods

Conclusion

Introduction and scenario

Scenario

Predict the next command in a series of command line inputs to a UNIX shell Prediction of next

command on a UNIX

. . .

96102513:34:49 cd

96102513:34:49 ls 96102513:34:49 emacs

96102513:34:49 exit

96102513:35:32 BLANK

96102513:35:32 cd

96102513:35:32 cd

96102513:35:32 rlogin 96102513:35:32 exit

96102514:25:46 BLANK 96102514:25:46 cd

96102514:25:46 telnet 96102514:25:46 ps

96102514:25:46 kill

96102514:25:46 emasc 96102514:25:46 emass

96102514:25:46 cp

200

Selected Topics of Pervasive Computing

Algorithmic approach - operation principle

Step 1:

	Ci	 c_{i+1}	

Step 2:

	 Ci		c_{i+1}	
Ci	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$	

Step 3:

	• • •	Ci		c_{i+1}	
Ci		$\frac{1}{n} \cdot \alpha + (1 - \alpha)$	$\frac{1}{n} \cdot \alpha$	$\frac{1}{n} \cdot \alpha$	
c_{i+1}		$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$	

Example operation

Events: A,B,C

 α : 0.8

• Step 1 – Input: A

	Α	В	С
Α	0.3333	0.3333	0.3333
Default	0.3333	0.3333	0.3333

• Prediction: A (0.3333), B (0.3333), C (0.3333)

Example operation

Events: A,B,C

 α : 0.8

• Step 2 – Input: A

	Α	В	С
Α	0.4667	0.2667	0,2667
Default	0.4667	0.2667	0,2667

Prediction: A (0.4667), B (0.2667), C (0.2667)

Example operation

Events: A,B,C

 $\alpha: 0.8$

Step 3 – Input: B

	А	В	С
Α	0.3733	0.4133	0.2133
В	0.3333	0.3333	0.3333
Default	0.3733	0.4133	0,2133

Prediction: A (0.3733), B (0.4133), C (0.2133)

Example operation

Events: A,B,C

 $\alpha: 0.8$

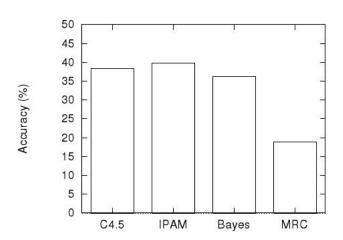
• Step 4 – Input: A

	А	В	С
Α	0.3733	0.4133	0.2133
В	0.4667	0.2667	0.2667
Default	0.4986	0.3306	0,1706

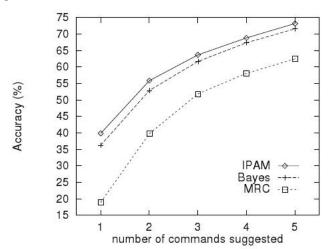
Prediction: A (0.3733), B (0.4133), C (0.2133)

Example operation

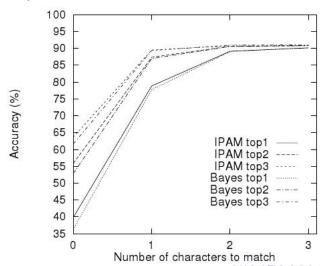
Events: A,B,C


 α : 0.8

• Step 5 – Input: C


	А	В	С
Α	0.2986	0.3306	0.3706
В	0.4667	0.2667	0.2667
С	0.3333	0.3333	0.3333
Default	0.3989	0.2645	0,3706

• Prediction: A (0.3989), B (0.2645), C (0.3706)


Results and figures

Results and figures

Prediction accuracy

Outline

Context prediction

Exact sequence matching

IPAM

ONISI

Alignment methods

Prediction with alignment methods

Conclusion

ONISI

Algorithmic approach – Extraction of observed pattern

- Length of patterns automatically varied
 - Longer patterns are deemed more important
 - Patterns are chosen to be longest sequences in histroy that match immediate history

Measure 1: Length

Sequences that predict action a are computed by $I_t(s, a)$

Average of lengths of k longest sequences that end with action a in state s and match history sequence immediately prior to time t

- Possible actions are ranked according to $l_t(s, a)$

Algorithmic approach – Extraction of observed pattern

- Length of patterns automatically varied
 - More frequent patterns are deemed more important

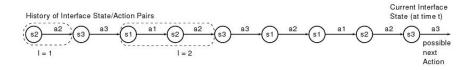
Measure 2: Frequency

Sequences that prediction action a are computed by $f_t(s,a)$

Frequency at which a sequence is observed in history

- Possible actions are ranked according to $f_t(s, a)$

Algorithmic operation


- Compare immediate history with state-action pair (s, a)
 - Running backwards through recorded history
 - Find k longest sequences that match immediate history
- Average length of sequences: $I_t(s, a)$
- Count number of times a sequence has occurred: $f_t(s, a)$
- Return ranking

$$R_t(s,a) = \alpha \frac{I_t(s,a)}{\sum_i I_t(s,a_i)} + (1-\alpha) \frac{f(s,a)}{\sum_i f(s,a_i)}$$
(1)

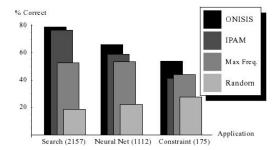
ONISI

Context prediction

Algorithmic operation

Assume:

•


- $\alpha = 0.9$
- All actions provide a sum $\sum_i l_t(s, a) = 5$
- a_3 has occured 50 times, s_3 has been visited 100 times
- Set of maximum length sequences: {2,1,0}

$$I_t(s_3, a_3) = \frac{0+1+2}{3} = 1 \tag{2}$$

$$R_t(s_3, a_3) = 0.9\frac{1}{5} + 0.1\frac{50}{100} = 0.18 + 0.05 = 0.23$$
 (3)

ONISI

Prediction accuracy - Performance

Outline

Context prediction

Context prediction

Exact sequence matching

IPAM

ONISI

Alignment methods

Prediction with alignment methods

Conclusion

Basic definitions

Context prediction

Alignment

Let $s = s_1 \dots s_m$ and $t_1 \dots t_n$ be two strings over an alphabet Σ and $-\notin \Sigma$ a gap symbol. Let $\Sigma' = \Sigma \cup \{-\}$. Let $h: (\Sigma')^* \to \Sigma^*$ be a homomorphism defined by h(a) = a for all $a \in \Sigma$ and $h(-)=\lambda$.

- An alignment between s and t is a pair (s', t') of length $l \ge \max\{m, n\}$ over Σ' that follows the constraints
 - $|s'| = |t'| > \max\{|s|, |t|\}$
 - h(s') = s
 - h(t') = t
 - $\forall i \in \{1...l\} : s'_i \neq \text{ or } t'_i \neq -$

Alignment prediction Basic definitions

- Example
 - s = GACGGATTATG
 - t = GATCGGAATAG
 - One possible alignment:
 - $s' = GA_CGGATTATG$
 - $t' = GATCGGAATA_G$

Basic definitions

- Example
 - s = GACGGATTATG
 - t = GATCGGAATAG
 - One possible alignment:
 - $s' = GA_CGGATTATG$
 - $t' = GATCGGAATA_G$
- Possible operations:

Insertion The first string contains a gap in this column

Deletion The second string contains a gap in this column

Match Both strings are identical in this column

Mismatch The strings do not match but the column also does not contain a gap.

Basic definitions

Alignment score

Let $p(a,b) \in \mathbb{Q}$ for all $a,b \in \Sigma$ and $g \in \mathbb{Q}$. The alignment score $\delta(s',t')$ for $s'=s'_1\ldots s'_l$ and $t'_1\ldots t'_l$ is defined as

$$\delta(s',t') = \sum_{i=1}^{l} \delta(s'_i,t'_i)$$
 (4)

With

$$\delta(x,y) = \begin{cases} p(x,y) & x,y \in \Sigma \\ g & x = - \\ g & y = - \end{cases}$$
 (5)

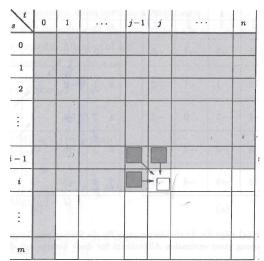
The optimasation goal is $goal_{\delta} \in \{\min, \max\}$

Global alignment problem

Input Two strings s and t over Σ and an alignment score δ with the optimisation aim $goal_{\delta}$

Valid solutions All alignments of s and t

Cost For each alignment A = (s', t'): $cost(A) = \delta(A)$


Optimisation aim $goal_{\delta}$

Alignment prediction Global alignment

Calculation of the global alignment between two strings s and t by integer programming:

$$sim(s_1 \dots s_i, t_1 \dots t_j) = goal_{\delta} \left\{ egin{array}{l} \underbrace{sim(s_1 \dots s_{i-1}, t_1 \dots t_j) + g} \\ \underbrace{sim(s_1 \dots s_i, t_1 \dots t_{j-1}) + g} \\ \underbrace{sim(s_1 \dots s_i, t_1 \dots t_{j-1}) + g} \\ \underbrace{sim(s_1 \dots s_{i-1}, t_1 \dots t_{j-1}) + p(s_i, t_j)} \\ \underbrace{Match/Mismatch} \end{array} \right.$$

Alignment prediction Global alignment

Global alignment

Calculation of similarity

```
Input: s = s_1 \dots s_m, t = t_1 \dots t_n
Output: sim(s,t) = M(m,n)
1 for i=0 to m do
                                                        Initialisation
      for i = 0 to n do
3
         M(i, j) := 0
4 for i = 0 to m do
                                                    Initialise borders
      M(i,0) = i \cdot g
6 for i = 0 to n do
      M(0, i) = i \cdot g
8 for i = 1 to m do
                                                      Fill out matrix
9
      for i = 1 to n do
           M(i,j) := \max\{M(i-1,j) + g, M(i,j-1) + g,
10
                          M(i-1,j-1) + p(s_i,s_j)
```

Global alignment

Context prediction

Calculation of an optimum alignment

```
Input: Similarity matrix M
Output: Alignment (s', t')
1 if i = i = 0 then
                                                         Align (i,j) –Recursive procedure
2 s' := t' := \lambda
3 else if M(i,j) = M(i-1,j) + g then
4
         (\overline{s},\overline{t}) := Align(i-1,i)
5
       s' := \overline{s} \cdot s_i : t' := \overline{t} \cdot -
         else if M(i,j) = M(i,j-1) + g then
6
7
             (\overline{s},\overline{t}) := Align(i,i-1)
             s' := \overline{s} \cdot - : t' := \overline{t} \cdot t_i
8
9
         else \{M(i,j) = M(i-1,j-1) + p(s_i,t_i)\}
               (\overline{s},\overline{t}) := Align(i-1,j-1)
10
              s' := \overline{s} \cdot s_i; t' := \overline{t} \cdot t_i
11
12 return (s',t')
```

Alignment prediction Global alignment

s	t	0	A 1	G 2	Т 3
	0	0	-2	-4	-6
A	1	-2	1	-1	-3
A	2	-4	-1	0	-2
A	3	-6	5-3	-2	-1
Т	4	-8	-5	-4	-1

8	t	0	A 1	G 2	T 3
	0	0	-2	-4	-6
A	1	-2	1	-1	-3
A	2	-4	-1	0	-2
A	3	-6	-3	-2	-1
Т	4	-8	-5	-4	-1

Context prediction

- Computational complexity to calclate global alignment
 - Time to compute the similarity matrix: O(nm)
 - Calculation of the optimum alignment: O(n+m)
 - Overall computation time: O(nm)
- Algorithm can also be extended to compute all alignments
 - Worst case: count of optimum alignments is exponential
 - Consequently, the WC runtime is also exponential.

Alignment methods

Local and semiglobal alignments

Local alignment problem

Input Two strings s and t over Σ and an alignment score δ with the optimisation aim $goal_{\delta}$

Valid solutions All local alignments of s and t

Cost For a local alignment
$$A = (\overline{s}', \overline{t}')$$
: $cost(A) = \delta(A)$

Optimisation aim Maximisation

- For local alignments, the optimisation aim is always maximisation.
- If the optimisation aim were minimisation, the resulting alignment were often very short (i.e. only one symbol)

Alignment prediction Local and semiglobal alignments

Example

•
$$s = AAAAACTCTCTCT$$

• $t = GCGCGCGCAAAAA$
• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$

- Example
 - s = AAAAACTCTCTCT
 - t = GCGCGCGCAAAAA $\delta = \begin{cases}
 1 & x = y \\
 -1 & x \neq y \\
 -2 & x = -; y = \end{cases}$

- AAAAA(CTCTCTCT)
- (GCGCGCGC)AAAAA
- Alignment score: 5

Context prediction

- Example
 - s = AAAAACTCTCTCT
 - t = GCGCGCGCAAAAA• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$
- Optimum global alignment
 - AAAAACTCTCTCT
 - GCGCGCGCAAAAA
 - Alignment score: -11

Local and semiglobal alignments

 We can calculate the optimum local alignment with a modified version of the algorithm for calculating the optimum global alignment

•
$$M(i,j) = max$$

$$\begin{cases}
M(i-1,j) + g, \\
M(i,j-1) + g, \\
M(i-1,j-1) + p(s_i, s_j) \\
0\end{cases}$$

- Row 0 and column 0 are initialised with 0
 - Suffix and prefix are disregarded

Alignment prediction Local and semiglobal alignments

- Semiglobal alignment
 - Align whole strings
 - Gap symbols at the beginning or at the end of the strings are for free

Context prediction

- Example
 - s = ACTTTATGCCTGCT

•
$$t = ACAGGCT$$

• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$

- Optimum global alignment
 - ACTTTATGCCTGCT
 - AC_ _ _ A_ G_ _ _GCT
 - Alignment score: −7

Context prediction

- Example
 - s = ACTTTATGCCTGCT
 - t = ACAGGCT• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$
- Optimum semiglobal alignment
 - ACTTTAT_ GCCTGCT
 - _ _ _ _ _ _ ACAGGCT_ _ _
 - Alignment score: 0

Context prediction

- Example
 - s = ACTTTATGCCTGCT

•
$$t = ACAGGCT$$

• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$

- Optimum local alignment
 - (ACTTTATGCCT)GCT
 - (ACAG)GCT
 - Alignment score: 3
 - But: Only short sequence aligned compared to the semiglobal alignment

- Types of semiglobal alignments
 - Variants can be combined with each other

Gap symbols for free	Modification of the algorithm				
Beginning of first string	Initialise first row of M with 0				
End of first string	Similarity corresponds to the maximum of the last row				
Beginning of second string	Initialise first column of M with 0				
End of second string	Similarity corresponds to the maximum of the last column				

Alignment prediction Local and semiglobal alignments

Context prediction

Example

•
$$s = AAAT$$

• $t = AGTA$
• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$

8	t	0	A 1	G 2	T 3	A 4
	0	0	-2	-4	-6	-8
A	1	0	1	-1	-3	-5
A	2.	0	1	0	-2	-2
A	3	0	1	0	-1	-1
T	4.	0	-1	0	1	-1

Local and semiglobal alignments

Example

•
$$s = AAAT$$

•
$$t = AGTA$$

• $\delta = \begin{cases} 1 & x = y \\ -1 & x \neq y \\ -2 & x = -; y = - \end{cases}$

- Optimum semiglobal alignment
 - AAAT
 - AGTA
 - Alignment score: 1

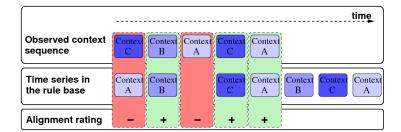
Outline

Alignment prediction approaches

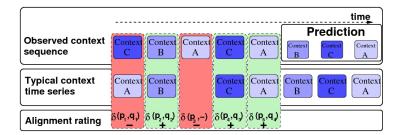
Context prediction

Exact sequence matching

IPAM


ONISI

Alignment methods


Prediction with alignment methods

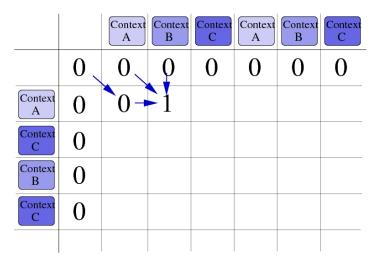
Conclusion

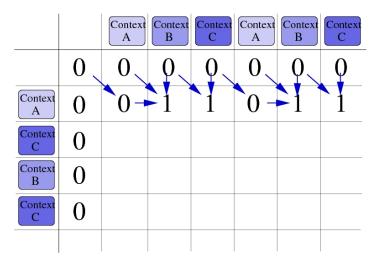
Prediction with alignment methods Prediction procedure

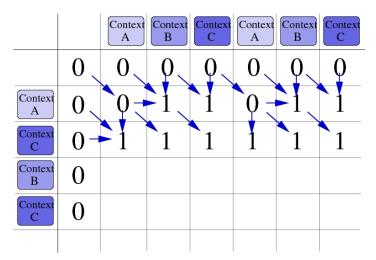
Prediction with alignment methods Prediction procedure

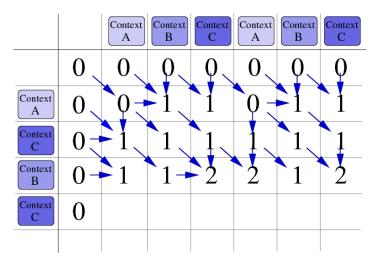
Prediction with alignment methods

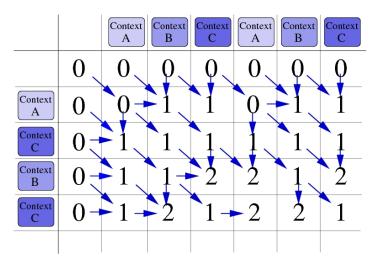
Example

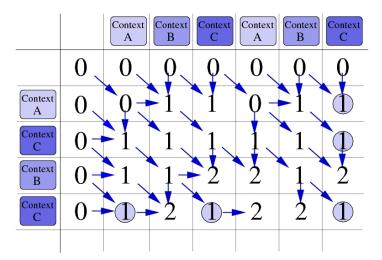

		Context A	Context B	Context C	Context A	Context B	Context
	0						
Context A							
Context C							
Context B							
Context							

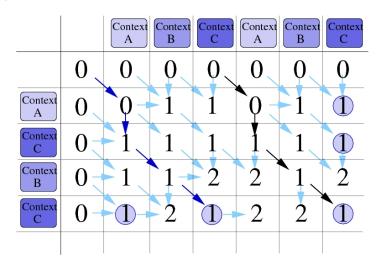

Prediction with alignment methods

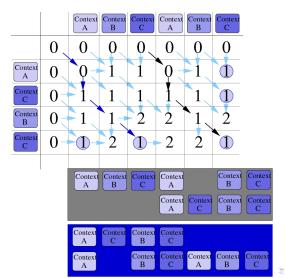

Example


		Context A	Context B	Context C	Context A	Context B	Context
	0	0	0	0	0	0	0
Context A	0						
Context C	0						
Context B	0						
Context	0						

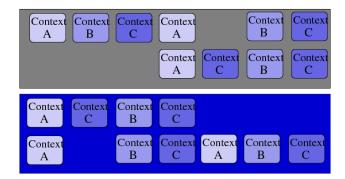

		Context A	Context B	Context C	Context A	Context B	Context
	0	0	0	0	0	0	0
Context A	0	0					
Context C	0						
Context B	0						
Context	0						







Prediction with alignment methods Example



Prediction with alignment methods Example

Prediction with alignment methods Example

Questions?

Stephan Sigg sigg@nii.ac.jp

- P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data On private biometrics, secure key storage and anti-counterfeiting, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

