Selected Topics of Pervasive Computing

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

06.11.2013

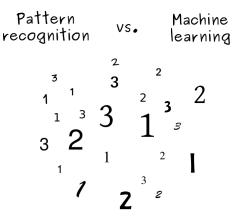
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Overview and Structure

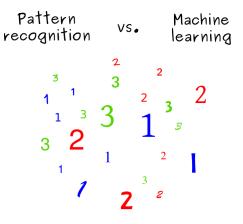
- 30.10.2013 Organisational
- 30.10.3013 Introduction
- 06.11.2013 Classification methods (Basic recognition, Bayesian, Non-parametric)
- 13.11.2013 Classification methods (Linear discriminant, Neural networks)
- 20.11.2013 -
- 27.11.2013 -
- 04.12.2013 -
- 11.12.2013 Classification methods (Sequential, Stochastic)
- 18.12.2013 Activity Recognition (Basics, Applications, Algorithms, Metrics)
- 08.01.2014 Security from noisy data (Basics, Entity, F. Commitment, F. Extractors)
- 15.01.2014 Security from noisy data (Error correcting codes, PUFs, Applications)
- 22.01.2014 Context prediction (Algorithms, Applications)
- 29.01.2014 Networked Objects (Sensors and sensor networks, body area networks)
- 05.02.2014 Internet of Things (Sensors and Technology, vision and risks)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Outline

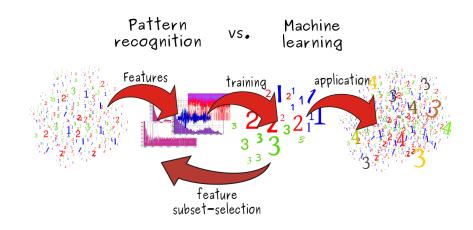

Introduction

- Recognition of patterns
- Bayesian decision theory
- Non-parametric techniques
- Linear discriminant functions
- Neural networks
- Sequential data
- Stochastic methods
- Conclusion

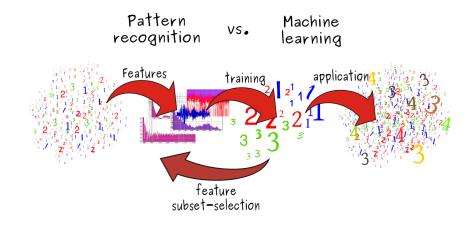

(Introduction)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○ ◆

Selected Topics of Pervasive Computing



◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○


◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Introduction

<ロ> <四> <四> <日> <日> <日</p> 2

(Introduction)

- Mapping of features onto classes by using prior knowledge
- What are characteristic features?
- Which approaches are suitable to obtain these features?

Selected Topics of Pervasive Computing

Non-parametric Linear discriminant

Sequential

Data sampling

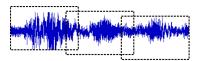
- Record sufficient training data
 - Annotated! (Ground-truth)
 - Multiple subjects
 - Various environmental conditions (time of day, weather, ...)

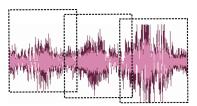
Non-parametric Linear discriminant

Data sampling

- Record <u>sufficient</u> training data
 - Annotated! (Ground-truth)
 - Multiple subjects
 - Various environmental conditions (time of day, weather, ...)

Example


- Electric supply data over 15 years covers 5000 days but only 15 christmas days
- Especially critical events like accidents (e.g. plane, car, earthquake) are scarce


Non-parametric Linear discriminant NN

Sequential

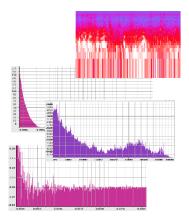
Feature subset-selection

- Pre-process data
 - Framing
 - Normalisation

<ロ> <同> <同> < 回> < 回> - 2

3

Feature subset-selection

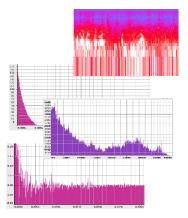

```
Domain knowledge?
                 -> better set of
                     ad-hoc features
        Features commensurate?
                 -> normalise
    Pruning of input required?
                 -> if no, create disjunctive
                    features or weithted
                      sums of features
        Independent features?
                -> construct conjunctive features
                     or products of features
             Is the data noisy?
                -> detect outlier examples
Do you know what to do first?
                -> If not, use a linear predictor
```

- Pre-process data
 - Framing
 - Normalisation

t NN S

Feature extraction

- Identify meaningful features
 - remove irrelevant/redundant features



・ロ ・ (部) ・ (き) ・ (き) きのへの Selected Topics of Pervasive Computing

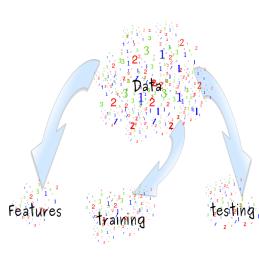
t NN Se

Feature extraction

- Identify meaningful features
 - remove irrelevant/redundant features
- Features can be contradictory!

Feature subset-selection

Simple ranking of features with correlation coefficients Example: Pearson Correlation Coefficient


$$\varrho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} \tag{1}$$

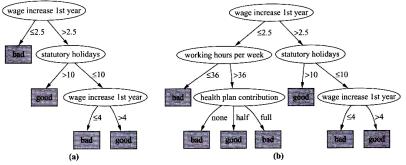
• Identifies linear relation between input variables x_i and an output y

Feature subset-selection

How to do reasonable feature selection

- Utilise dedicated test- and training- data-sets
- Pay attention that a single raw-data sample could not impact features in both these sets
- Don't train the features on the training- or testdata-set

< 17 ▶


Non-parametric Linear discriminant

ΝN

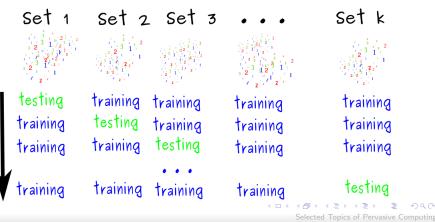
Sequential

Training of the classifier

A decision tree classifier

イロン イロン イヨン イヨン 3

ant NN

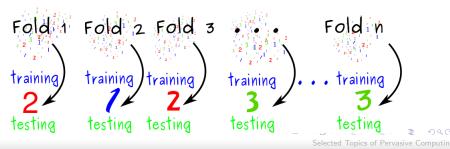

Sequential

Conclusi

Training of the classifier

Evaluation of classification performance

- k-fold cross-validation
 - Standard: $k{=}10$



Training of the classifier

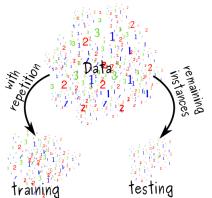
Evaluation of classification performance

Leave-one-out cross-validation

- n-fold cross validation where n is the number of instances in the data-set
- Each instance is left out once and the algorithm is trained on the remaining instances
- Performance of left-out instance (success/failure)

Non-parametric Linear discriminant

Sequential


Training of the classifier

Evaluation of classification performance

0.632 Bootstrap

- Form training set by choosing n instances from the data-set with replacement
- All not picked instances are used for testing
- Probability to pick a specific instance:

$$1 - (1 - \frac{1}{n})'' \approx 1 - e^{-1} \approx 0.632$$

∃→ < ∃→</p>

Non-parametric Linear discriminant

Sequential

Training of the classifier

Evaluation of classification performance

Classification accuracy

- Confusion matrices
- Precision
- Recall

	1		Clas	sific	ation			
	Aw	No	P	Sb	S	Sr	St	Σ
Aw	52		3	6	0	17	22	100
No		436	25	7	6	17	9	
To		40	59				1	
Sb	15	22	scorese	32	4	22	5	
SI	12	11	1	6	48	8	14	
Sr	4	15		6	1	67	7	
St	3	18	1	1	24	10	43	
27	92	551	86	65	94	129	83	

1			Cla	ssifica	ation			
	Aw	No	\mathbf{T}_{0}	Sb	SI	Sr	St	recall
Aw	.58	.09		.13	.11	.05	.04	
No		.872	.05	.014	.012	.034	.018	
To		.4	.59				.01	
Sb	.15	.22		.32	.04	.22	.05	
SI	.12	.11	.01	.06	.48	.08	.14	
Sr	.04	.15		.06	.01	.67	.07	
St		.18	.01	.01	.24	.1	.43	
prec	.630	.791	.686	.492	.511	.519	.518	

・ロン ・回と ・ヨン ・ ヨン 3

Training of the classifier

Evaluation of classification performance

Information score

Let C be the correct class of an instance and $\mathcal{P}(C)$, $\mathcal{P}'(C)$ be the prior and posterior probability of a classifier We define:¹

$$I_{i} = \begin{cases} -\log(\mathcal{P}(C)) + \log(\mathcal{P}'(C)) & \text{if } \mathcal{P}'(C) \ge \mathcal{P}(C) \\ \log(1 - \mathcal{P}(C)) + \log(1 - \mathcal{P}'(C)) & \text{else} \end{cases}$$
(2)

The information score is then

$$\mathsf{IS} = \frac{1}{n} \sum_{i=1}^{n} I_i \tag{3}$$

I. Kononenko and I. Bratko: Information-Based Evaluation Criterion for Classifier's Performance, Machine Learning, 6, 67-80, 1991. ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Non-parametric Linear discriminant NN

Sequential

Training of the classifier

Evaluation of classification performance

Brier score

The Brier score is defined as

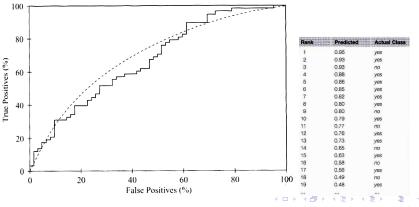
Brier =
$$\sum_{i=1}^{n} (t(x_i) - p(x_i))^2$$
 (4)

where

$$t(x_i) = \begin{cases} 1 & \text{if } x_i \text{ is the correct class} \\ 0 & \text{else} \end{cases}$$
(5)

and $p(x_i)$ is the probability the classifier assigned to the class x_i .

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ


Non-parametric Linear discriminant

Sequential

Training of the classifier

Evaluation of classification performance

Area under the receiver operated characteristic (ROC) curve (AUC)

t NN Sec

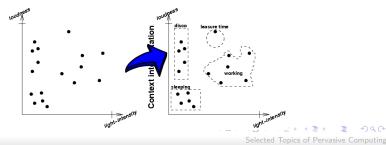
Sequential Stoc

Conclus

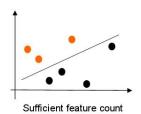
Pattern recognition and classification

Data mining frameworks

- Orange Data Mining (http://orange.biolab.si/)
- Weka Data Mining (http://www.cs.waikato.ac.nz/ml/weka/)



Selected Topics of Pervasive Computing


- From features to context.
 - Measure available data on features
 - Context reasoning by appropriate method
 - Syntactical (rule based e.g. RuleML)
 - Bayesian classifier
 - Non-parametric
 - Linear discriminant
 - Neural networks
 - Sequential
 - Stochastic

- Allocation of sensor value by defined function
 - Correlation of various data sources
 - Several methods possible simple approaches
 - Template matching
 - Minimum distance methods
 - 'Integrated' feature extraction
 - Nearest Neighbour
 - Neural Networks
- Problem
 - Measured raw data might not allow to derive all features required
 - Therefore often combination of sensors

Not enough features

(人間) シスヨン スヨン

Selected Topics of Pervasive Computing

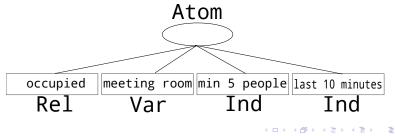
3

- Methods Syntactical (Rule based)
 - Idea: Description of Situation by formal Symbols and Rules
 - Description of a (agreed on?) world view
 - Example: RuleML
- Comment
 - Pro:
 - Combination of rules and identification of loops and impossible conditions feasible

Contra:

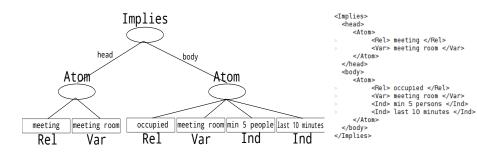
- Very complex with more elaborate situations
- Extension or merge of rule sets typically not possible without contradictions

イロト 不得 とくほと くほとう ほ

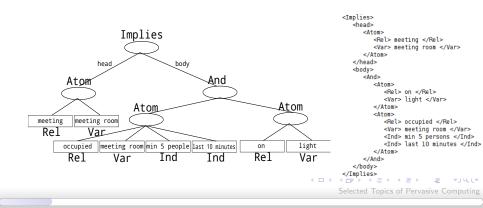

- Rule Markup Language: Language for publishing and sharing rules
- Hierarchy of rule-sub-languages (XML, RDF, XSLT, OWL)
- Example:
 - A meeting room was occupied by min 5 people for the last 10 minutes.

<atom></atom>	
	occupi
<var></var>	meetin

```
<Ind> min 5 persons </Ind>
<Ind> last 10 minutes </Ind>
</Atom>
```


ed </Rel>

| room </Var>



Selected Topics of Pervasive Computing

- Also conditions can be modelled
 - A Meeting is taking place in a meeting room when it was occupied by min 5 people for the last 10 minutes.

- Logical combination of conditions
 - A Meeting is taking place in a meeting room when it was occupied by min 5 people for the last 10 minutes and the light is on.

Outline

Introduction

- Recognition of patterns
- Bayesian decision theory
- Non-parametric techniques
- Linear discriminant functions
- Neural networks
- Sequential data
- Stochastic methods
- Conclusion

・ キョット 本語 マネ キョット きょうりんの

Selected Topics of Pervasive Computing