Computer Networks

Jan 31st, 2013

Announcements

• Final exam: Thursday 07.02.2013

• 10:00 -12:00 : MN06

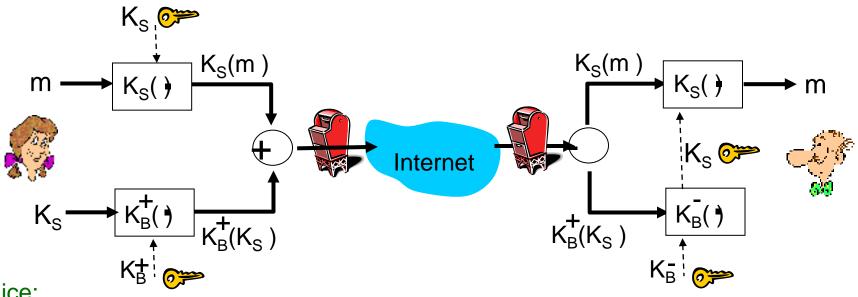
- Language: English + German, answers possible in both languages
- No additional resources (calculator etc.) allowed. Just bring pens ;).

Practical Course

- Practical Course Networking Lab (BSc)
- o https://wiki.net.informatik.uni-goettingen.de/wiki/Teaching
- B.Inf.802/803/804: Fachpraktikum I/II/III (180h, 6 ECTS)
- Block course during the semester break
- 2 weeks, groups of 2 persons
- Send the TAs an email if you are interested

Research at NET group

- We always have topics for Bachelor/Master thesis interests as well as for student projects
- Current research focuses:
 - Social Networks (Measurements, Analysis, Security)
 - E.g.: How does information propagate through a social network? Or: How can we build decentralized social networks? Or: How secure are social networks?
 - Also some cloud networking aspects
- Cloud Computing
- Content-Centric-Networking
 - What if we route packets based on names instead of addresses?



Research at NET group

- If you are interested, send an email to
 - Prof. Fu (<u>fu@cs.uni-goettingen.de</u>)
 - David Koll (<u>koll@cs.uni-goettingen.de</u>)

Secure E-Mail

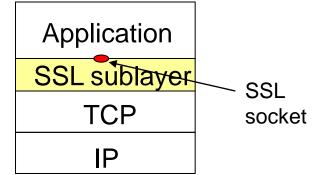
Alice:

- o generates random symmetric private key, K_S.
- $_{\odot}~$ encrypts message with K_{S} (for efficiency)
- $_{\odot}~$ also encrypts K_s with Bob's public key.
- \circ sends both K_S(m) and K_B(K_S) to Bob.

Bob: uses his private key to decrypt and recover K_{s} $_{\odot}\,$ uses K_{s} to decrypt $K_{s}(m)$ to recover m

Why symmetric keys?

- Why is a symmetric key used in most protocols to encrypt a data payload (the message etc.), even if a public/private key infrastructure exists?
- Public/Private keying more costly
- Minimal use of public/private key minimizes the key exposure
 - Symmetric key can be generated each time on the fly and is therefore always fresh
 - Public/Private key is always the same. Encrypting large amounts of data could compromise the key... (although no efficient algorithm is known yet)


PGP E-Mail signature

N∽E∽T» ₩-O-R-K-S Verification: Bob decrypts the PGP signature and obtains H(m). Additionally he computes H(m) for the message himself and computes it with the H(m) Alice computed.

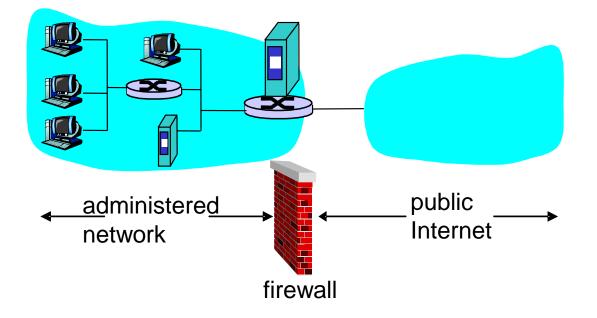
SSL

- What are the three main phases of SSL?
 - 1. Handshake (TCP connection, authentication + master secret generation)
 - $_{\circ}$ 2. Key derivation
 - 3. Data transfer
- On what layer does SSL reside and why is that advantageous?
 - provides transport layer
 security to any TCP-based
 application using
 SSL services.

TCP enhanced with SSL

IPsec

- Please sketch one typical scenario, where IPsec is used today.
 - VPN gateway at company or university. E.g.
 134.76.22.1 is the VPN Gateway for the GWDG
 - Note: IPSec works on IP layer (SSL: above TCP)
- What are the two main protocols used in IPsec and what is their primary difference with respect to security properties?
 - Authentication Header (AH): Ensures authentication and data integrity. No encryption!
 - Encapsulated Security Payload (ESP): Ensures authentication, data integrity and encryption.


802.11i

- Should ensure better protection than WEP
 WPA is a subset of 802.11i
- Who is handling the authentication information in an 802.11i scenario?
 - Using TLS-EAP (Extensible Authentication Protocol over Transport Layer Security) to contact an AAA (Authentication, Authorization, Accounting) Server

Firewalls

- What is the purpose of a firewall and what are filter rules?
 - o Isolation of own network from internet!

Filter rules

- The firewall can be configured to only let certain packets pass. An administrator might be interested in setting up rules like:
 - No telnet connections to hosts behind the FW
 - Prevent outside machines to connect to inside machines, but still inside machines can connect to outsiders
 - Prevent web radios
 - Many more...

Thank you

Any questions?

