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Introduction

Topic models Documents are mixtures of topics

Topics Probability distribution over words
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Introduction

Assumption

The process of generating documents is to iteratively

1 choose a topic

2 draw word from that topic wrt topic’s distribution
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Introduction

Generative models

Generative models for documents describe probabilistic sampling
rules which describe how words in documents might be generated
based on latent (random) variables
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Introduction

→ Fitting a generative model is the task of finding the best set
of latent variables that might explain the observed words in a
document
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Introduction

→ In statistical inferences we would like to know what topic
model is most likely to have generated the data
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Bag-of-words

Generative models do not take any assumption on the order of
words in documents but only on their frequency. This is called the
bag-of-words assumption

→ Since word-order might contain important cues to the content
of a document, also Topic models which are sensitive to
word-order have been defined too.1

1
Griffiths, Steyvers, Blei and Tenenbaum, Integrating topics and syntax, Advances in Neural Information

Processing, 2005
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Probabilistic Topic Models

Notation

P[z ] Distribution over topics z in a particular document

P[w |z ] Probability distribution over words w given topic z

wi i-th word in a document

P[zi = j ] Probability that the j-th topic was sampled for the
i-th word token

P[wi |wi = j ] Probability of word wi under topic j
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Probabilistic Topic Models

Notation

P[z ] Distribution over topics z in a particular document

P[w |z ] Probability distribution over words w given topic z

wi i-th word in a document

P[zi = j ] Probability that the j-th topic was sampled for the
i-th word token

P[wi |wi = j ] Probability of word wi under topic j

Assumption: Each wi in a document was generated by first
sampling a topic from the topic distribution and then
choosing a word from the topic-word distribution.
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Probabilistic Topic Models

Notation

P[z ] Distribution over topics z in a particular document

P[w |z ] Probability distribution over words w given topic z

wi i-th word in a document

P[zi = j ] Probability that the j-th topic was sampled for the
i-th word token

P[wi |wi = j ] Probability of word wi under topic j

Distribution over words within a document: (T ≡ # of topics)

P[wi ] =
T∑
j=1

P[wi |zi = j ]P[zi = j ]
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Probabilistic Topic Models

Multinomial distribution

Generalization of the binomial distribution.

For n independent trials each of which leads to a success for
exactly one of k categories, with each category having a given
fixed success probability (Topics in documents)

→ multinomial distribution gives probability of any particular
combination of numbers of successes for the categories

Let p = (p1, . . . , pT ) be a multinomial distribution and Γ the
gammafunction.
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Probabilistic Topic Models

Multinomial distribution

Generalization of the binomial distribution.

For n independent trials each of which leads to a success for
exactly one of k categories, with each category having a given
fixed success probability (Topics in documents)

→ multinomial distribution gives probability of any particular
combination of numbers of successes for the categories

Let p = (p1, . . . , pT ) be a multinomial distribution and Γ the
gammafunction.

Γ(t) =

∫ ∞
0

x t−1e−x dx .
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Probabilistic Topic Models

Multinomial distribution

Generalization of the binomial distribution.

For n independent trials each of which leads to a success for
exactly one of k categories, with each category having a given
fixed success probability (Topics in documents)

→ multinomial distribution gives probability of any particular
combination of numbers of successes for the categories

Let p = (p1, . . . , pT ) be a multinomial distribution and Γ the
gammafunction.

→ Latent Dirichlet Allocation (LDA) is then a generative model:

Dir(p, α1, . . . , αT ) =
Γ
(∑

j αj

)
∏

j Γ (αj)

T∏
j=1

p
αj−1
j
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Probabilistic Topic Models

Dir(p, α1, . . . , αT ) =
Γ
(∑

j αj

)
∏

j Γ (αj)

T∏
j=1

p
αj−1
j

aj can be interpreted as prior observation count for the
number of times topic j is sampled in a document

→ Usually, choose α1, . . . , αT = α

Placing a Dirichlet prior on the topic distribution θ will result
in a smoothed topic distribution.

Amount of smoothing determined by α
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Probabilistic Topic Models

Symmetric Dirichlet distribution for three topics.

Left: α = 4;
Right: α = 2

→ Darker colors indicate higher probability;
∑

j pj = 1
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Probabilistic Topic Models

Graphical model using plate notation

α, β parameters to control the prior distribution over topics and
documents
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Probabilistic Topic Models

Geometric interpretation of probabilistic topic models

Probability distribution over words given by the w − 1
dimensional simplex (since

∑
j pj = 1)
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Probabilistic Topic Models

For T <<W , the topics span a lower dimensional subsimplex.

Projection of each document onto that subsimplex can be
thought of as dimensionality reduction 14 / 22

06.07.2015 Stephan Sigg Machine Learning and Pervasive Computing



Introduction Probabilistic Topic Models Extraction of topics

Probabilistic Topic Models

Interpretation as Matrix Factorization
Probability distribution over words given by the W-1
dimensional simplex (since

∑
j pj = 1)
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Extraction of topics

The main variables of interest for topic models are

topic-word distributions φ = P[w |z ]
topic distributions over documents θ = P[z ]

Approaches to estimate these distributions

Expectation Maximisation (EM)

Markov chain Monte Carlo (MCMC)
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Extraction of topics – EM

Expectation Maximisation Algorithm

An iterative method for finding maximum likelihood or maximum a
posteriori estimates of parameters in statistical models which
depend on unobserved latent variables
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Extraction of topics – EM

Expectation Maximisation Algorithm

An iterative method for finding maximum likelihood or maximum a
posteriori estimates of parameters in statistical models which
depend on unobserved latent variables

The EM algorithm starts with an initial estimation of
parameters

→ an interation of the EM algorithm consits of the steps

Expectation step Calculation for the expectation of the
log-likelihood based on current parameter
estimates (the latent variables)

Maximisation step Computing parameters which maximise
the expected log-likelihood
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Extraction of topics – EM
E and M steps for topic models:

→ an interation of the EM algorithm consits of the steps

Expectation step

P[z |d ,w ] =
P[z ]P[d |z ]P[w |z ]∑

z ′∈Z P[z ′]P[d |z ′]P[w |z ′]
Maximisation step

P[w |z ] ∝
∑
d∈D

n(d ,w)P[z |d ,w ]

P[d |z ] ∝
∑
w∈W

n(d ,w)P[z |d ,w ]

P[z ] ∝
∑
d∈D

∑
w∈W

n(d ,w)P[z |d ,w ]

(n(d ,w) specifies how often w occurs in document d) 19 / 22
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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C.M. Bishop: Pattern recognition and machine learning,
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R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification,
Wiley, 2001.
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