Machine Learning and Pervasive Computing

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

06.07.2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview and Structure

- 13.04.2015 Organisation
- 13.04.2015 Introduction
- 20.04.2015 Rule-based learning
- 27.04.2015 Decision Trees
- 04.05.2015 A simple Supervised learning algorithm
- 11.05.2015 -
- 18.05.2015 Excursion: Avoiding local optima with random search 25.05.2015 -
- 01.06.2015 High dimensional data
- 08.06.2015 Artificial Neural Networks
- 15.06.2015 k-Nearest Neighbour methods
- 22.06.2015 Probabilistic graphical models
- 29.06.2015 Topic models
- 06.07.2015 Unsupervised learning
- 13.07.2015 Anomaly detection, Online learning, Recom. systems

2 / 22

-

Outline

Introduction

Probabilistic Topic Models

Extraction of topics

06.07.2015

Stephan Sigg

Introduction

Topic models Documents are mixtures of topics Topics Probability distribution over words

Topic 247	Topic 5		Topic 43		Topic 56	
word prob.	word p	prob.	word	prob.	word	prob.
DRUGS .069	RED	.202	MIND	.081	DOCTOR	.074
DRUG .060	BLUE	.099	THOUGHT	.066	DR.	.063
MEDICINE .027	GREEN	.096	REMEMBER	.064	PATIENT	.061
EFFECTS .026	YELLOW	.073	MEMORY	.037	HOSPITAL	.049
BODY .023	WHITE	.048	THINKING	.030	CARE	.046
MEDICINES .019	COLOR	.048	PROFESSOR	.028	MEDICAL	.042
PAIN .016	BRIGHT	.030	FELT	.025	NURSE	.031
PERSON .016	COLORS	.029	REMEMBERED	.022	PATIENTS	.029
MARIJUANA .014	ORANGE	.027	THOUGHTS	.020	DOCTORS	.028
LABEL .012	BROWN	.027	FORGOTTEN	.020	HEALTH	.025
ALCOHOL .012	PINK	.017	MOMENT	.020	MEDICINE	.017
DANGEROUS .011	LOOK	.017	THINK	.019	NURSING	.017
ABUSE .009	BLACK	.016	THING	.016	DENTAL	.015
EFFECT .009	PURPLE	.015	WONDER	.014	NURSES	.013
KNOWN .008	CROSS	.011	FORGET	.012	PHYSICIAN	.012
PILLS .008	COLORED	.009	RECALL	.012	HOSPITALS	.011

・ロン ・日 ・ ・ ヨン ・ ヨン

Machine Learning and Pervasive Computing

06.07.2015

Topic 5

Topic 56

Introduction

Topic 247

•							
word	prob.	W	ord prob	word	prob.	word	prob.
DRUGS	.069	R	ED .202	MIND	.081	DOCTOR	.074
DRUG	.060	BL	UE .099	THOUGHT	.066	DR.	.063
MEDICINE	.027	GRE	EN .096	REMEMBER	.064	PATIENT	.061
EFFECTS	.026	YELLO	OW .073	MEMORY	.037	HOSPITAL	.049
BODY	.023	WH	TE .048	THINKING	.030	CARE	.046
MEDICINES	.019	COL	OR .048	PROFESSOR	.028	MEDICAL	.042
PAIN	.016	BRIG	HT .030	FELT	.025	NURSE	.031
PERSON	.016	COLC	RS .029	REMEMBERED	.022	PATIENTS	.029
MARIJUANA	.014	ORAN	GE .027	THOUGHTS	.020	DOCTORS	.028
LABEL	.012	BROV	WN .027	FORGOTTEN	.020	HEALTH	.025
ALCOHOL	.012	PI	NK .017	MOMENT	.020	MEDICINE	.017
DANGEROUS	.011	LO	OK .017	THINK	.019	NURSING	.017
ABUSE	.009	BLA	CK .016	THING	.016	DENTAL	.015
EFFECT	.009	PURF	PLE .015	WONDER	.014	NURSES	.013
KNOWN	.008	CRC	OSS .011	FORGET	.012	PHYSICIAN	.012
PILLS	.008	COLOR	ED .009	RECALL	.012	HOSPITALS	.011

Topic 43

Assumption

The process of generating documents is to iteratively

- choose a topic
- 2 draw word from that topic wrt topic's distribution

Extraction of to

Introduction

Generative models

Generative models for documents describe probabilistic sampling rules which describe how words in documents might be generated based on latent (random) variables

06.07.2015

Extraction of tor

Introduction

Generative models

Generative models for documents describe probabilistic sampling rules which describe how words in documents might be generated based on latent (random) variables

PROBABILISTIC GENERATIVE PROCESS

Stephan Sigg

Machine Learning and Pervasive Computing

6 / 22

-

Extraction of

Introduction

 \rightarrow Fitting a generative model is the task of finding the best set of latent variables that might explain the observed words in a document

Extraction of topic

Introduction

$\rightarrow\,$ In statistical inferences we would like to know what topic model is most likely to have generated the data

6 / 22

-

Bag-of-words

Generative models do not take any assumption on the order of words in documents but only on their frequency. This is called the bag-of-words assumption

¹Griffiths, Steyvers, Blei and Tenenbaum, Integrating topics and syntax, Advances in Neural Information Processing, 2005

Stephan Sigg

Machine Learning and Pervasive Computing

7 / 22

-

Bag-of-words

Generative models do not take any assumption on the order of words in documents but only on their frequency. This is called the bag-of-words assumption

 \rightarrow Since word-order might contain important cues to the content of a document, also Topic models which are sensitive to word-order have been defined too.¹

¹Griffiths, Steyvers, Blei and Tenenbaum, Integrating topics and syntax, Advances in Neural Information Processing, 2005 $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle$

Outline

Introduction

Probabilistic Topic Models

Extraction of topics

06.07.2015

Stephan Sigg

Extraction of to

Probabilistic Topic Models

Notation

$\mathcal{P}[z]$ Distribution over topics z in a particular document $\mathcal{P}[w|z]$ Probability distribution over words w given topic z w_i *i*-th word in a document

- $\mathcal{P}[z_i = j]$ Probability that the *j*-th topic was sampled for the *i*-th word token
- $\mathcal{P}[w_i|w_i = j]$ Probability of word w_i under topic j

06.07.2015

Machine Learning and Pervasive Computing

Notation

 $\mathcal{P}[z]$ Distribution over topics z in a particular document $\mathcal{P}[w|z]$ Probability distribution over words w given topic z w_i *i*-th word in a document $\mathcal{P}[z_i = j]$ Probability that the *j*-th topic was sampled for the i-th word token $\mathcal{P}[w_i|w_i = j]$ Probability of word w_i under topic j

Assumption: Each w_i in a document was generated by first sampling a topic from the topic distribution and then choosing a word from the topic-word distribution.

Machine Learning and Pervasive Computing

・ロット (雪) (下) (日) (日)

9 / 22

Extraction of t

Probabilistic Topic Models

Notation

 $\mathcal{P}[z]$ Distribution over topics z in a particular document $\mathcal{P}[w|z]$ Probability distribution over words w given topic z w_i *i*-th word in a document $\mathcal{P}[z] = i$ Probability that the *i*-th topic was sampled for the

- $\mathcal{P}[z_i = j]$ Probability that the *j*-th topic was sampled for the *i*-th word token
- $\mathcal{P}[w_i|w_i = j]$ Probability of word w_i under topic j

Distribution over words within a document: ($T \equiv \#$ of topics)

$$\mathcal{P}[w_i] = \sum_{j=1}^{T} \mathcal{P}[w_i | z_i = j] \mathcal{P}[z_i = j]$$

Machine Learning and Pervasive Computing

イロン 不良と 不良と 下間

Probabilistic Topic Models

Multinomial distribution

Generalization of the binomial distribution.

For *n* independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability (Topics in documents)

Multinomial distribution

Generalization of the binomial distribution.

For *n* independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability (Topics in documents)

 \rightarrow multinomial distribution gives probability of any particular combination of numbers of successes for the categories

Multinomial distribution

Generalization of the binomial distribution.

For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability (Topics in documents)

 \rightarrow multinomial distribution gives probability of any particular combination of numbers of successes for the categories

Let $p = (p_1, \ldots, p_T)$ be a multinomial distribution and Γ the gammafunction.

$$\Gamma(t)=\int_0^\infty x^{t-1}e^{-x}\,dx.$$

Multinomial distribution

Generalization of the binomial distribution.

For *n* independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability (Topics in documents)

 \rightarrow multinomial distribution gives probability of any particular combination of numbers of successes for the categories

Let $p = (p_1, \ldots, p_T)$ be a multinomial distribution and Γ the gammafunction.

 \rightarrow Latent Dirichlet Allocation (LDA) is then a generative model:

$$Dir(p,\alpha_1,\ldots,\alpha_T) = \frac{\Gamma\left(\sum_j \alpha_j\right)}{\prod_j \Gamma\left(\alpha_j\right)} \prod_{j=1}^T p_j^{\alpha_j-1}$$

Extraction_of_to

Probabilistic Topic Models

$$Dir(p, \alpha_1, \dots, \alpha_T) = \frac{\Gamma\left(\sum_j \alpha_j\right)}{\prod_j \Gamma\left(\alpha_j\right)} \prod_{j=1}^T p_j^{\alpha_j - 1}$$

Machine Learning and Pervasive Computing

06.07.2015

Stephan Sigg

Probabilistic Topic Models

$$Dir(p, \alpha_1, \dots, \alpha_T) = \frac{\Gamma\left(\sum_j \alpha_j\right)}{\prod_j \Gamma(\alpha_j)} \prod_{j=1}^T p_j^{\alpha_j - 1}$$

 a_j can be interpreted as prior observation count for the number of times topic j is sampled in a document

 \rightarrow Usually, choose $\alpha_1, \ldots, \alpha_T = \alpha$

-

06.07.2015

Machine Learning and Pervasive Computing

・ロン ・日 ・ ・ ヨン ・ ヨン

$$Dir(p, \alpha_1, \dots, \alpha_T) = \frac{\Gamma\left(\sum_j \alpha_j\right)}{\prod_j \Gamma(\alpha_j)} \prod_{j=1}^T p_j^{\alpha_j - 1}$$

 a_j can be interpreted as prior observation count for the number of times topic j is sampled in a document

$$\rightarrow$$
 Usually, choose $\alpha_1, \ldots, \alpha_T = \alpha$

Placing a Dirichlet prior on the topic distribution θ will result in a smoothed topic distribution.

Amount of smoothing determined by $\boldsymbol{\alpha}$

Machine Learning and Pervasive Computing

Extraction of topics

Probabilistic Topic Models

Symmetric Dirichlet distribution for three topics. Left: $\alpha = 4$; Right: $\alpha = 2$

 \rightarrow Darker colors indicate higher probability; $\sum_i p_i = 1$

06.07.2015

Stephan Sigg

Machine Learning and Pervasive Computing

Extraction of top

Probabilistic Topic Models

Graphical model using plate notation

 $\alpha,\beta\,$ parameters to control the prior distribution over topics and documents

-

Machine Learning and Pervasive Computing

・ロン ・日 ・ ・ ヨン ・ ヨン

Extraction of topics

Probabilistic Topic Models

Geometric interpretation of probabilistic topic models Probability distribution over words given by the w - 1dimensional simplex (since $\sum_j p_j = 1$)

-

Extraction of topics

Probabilistic Topic Models

For $T \ll W$, the topics span a lower dimensional subsimplex. Projection of each document onto that subsimplex can be thought of as dimensionality reduction

Stephan Sigg

Extraction_of_to

on of topics

Probabilistic Topic Models

Interpretation as Matrix Factorization Probability distribution over words given by the W-1 dimensional simplex (since $\sum_j p_j = 1$)

06.07.2015

Stephan Sigg

Introduction

Probabilistic Topic Models

Extraction of topics

06.07.2015

Stephan Sigg

Extraction of topics

The main variables of interest for topic models are topic-word distributions $\phi = \mathcal{P}[w|z]$ topic distributions over documents $\theta = \mathcal{P}[z]$

06.07.2015

Stephan Sigg

Extraction of topics

The main variables of interest for topic models are topic-word distributions $\phi = \mathcal{P}[w|z]$ topic distributions over documents $\theta = \mathcal{P}[z]$

Approaches to estimate these distributions

Expectation Maximisation (EM) Markov chain Monte Carlo (MCMC)

06.07.2015

Machine Learning and Pervasive Computing

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Expectation Maximisation Algorithm

An iterative method for finding maximum likelihood or maximum a posteriori estimates of parameters in statistical models which depend on unobserved latent variables

06.07.2015

Stephan Sigg

Machine Learning and Pervasive Computing

Expectation Maximisation Algorithm

An iterative method for finding maximum likelihood or maximum a posteriori estimates of parameters in statistical models which depend on unobserved latent variables

The EM algorithm starts with an initial estimation of parameters

06.07.2015

Machine Learning and Pervasive Computing

Expectation Maximisation Algorithm

An iterative method for finding maximum likelihood or maximum a posteriori estimates of parameters in statistical models which depend on unobserved latent variables

The EM algorithm starts with an initial estimation of parameters

→ an interation of the EM algorithm consits of the steps
Expectation step Calculation for the expectation of the log-likelihood based on current parameter estimates (the latent variables)
Maximisation step Computing parameters which maximise the expected log-likelihood

Machine Learning and Pervasive Computing

E and M steps for topic models:

 $\rightarrow\,$ an interation of the EM algorithm consits of the steps

 $(n(d, w) \text{ specifies how often } w \text{ occurs in document}_{\mathbb{P}} d)_{\mathbb{P}}$

06.07.2015

Stephan Sigg

Extraction of topics

Extraction of topics - EM

E and M steps for topic models:

 $\rightarrow\,$ an interation of the EM algorithm consits of the steps $Expectation\,\,step$

$$\mathcal{P}[z|d,w] = \frac{\mathcal{P}[z]\mathcal{P}[d|z]\mathcal{P}[w|z]}{\sum_{z'\in\mathcal{Z}}\mathcal{P}[z']\mathcal{P}[d|z']\mathcal{P}[w|z']}$$

(n(d, w) specifies how often w occurs in document $d)_{z}$

Stephan Sigg

Machine Learning and Pervasive Computing

= 19/22

Extraction

Extraction of topics – EM

E and M steps for topic models:

 \rightarrow an interation of the EM algorithm consits of the steps Expectation step

$$\mathcal{P}[z|d,w] = \frac{\mathcal{P}[z]\mathcal{P}[d|z]\mathcal{P}[w|z]}{\sum_{z'\in\mathcal{Z}}\mathcal{P}[z']\mathcal{P}[d|z']\mathcal{P}[w|z']}$$

Maximisation step

$$\mathcal{P}[w|z] \propto \sum_{d \in \mathcal{D}} n(d, w) \mathcal{P}[z|d, w]$$
$$\mathcal{P}[d|z] \propto \sum_{w \in \mathcal{W}} n(d, w) \mathcal{P}[z|d, w]$$
$$\mathcal{P}[z] \propto \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} n(d, w) \mathcal{P}[z|d, w]$$

= 19/22 Machine Learning and Pervasive Computing

06.07.2015

Introduction

Probabilistic Topic Models

Extraction of topics

06.07.2015

Stephan Sigg

Questions?

Stephan Sigg stephan.sigg@cs.uni-goettingen.de

06.07.2015

Stephan Sigg

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

Stephan Sigg

Machine Learning and Pervasive Computing

イロト イポト イヨト イヨト