Social Networks: Models

Advanced Computer Networks

Summer Semester 2013

$$
\begin{aligned}
& \text { comput- } \\
& \mathbf{N} \text { - }) \text {-R-K-S }
\end{aligned}
$$

Recap: Power-law Distribution

o The fraction of node degrees in a social network follows power-law distribution

- Let $\mathrm{f}(\mathrm{k})$ be the fraction of items have value k

$$
f(k)=z k^{-\alpha}
$$

where α and z are constants

- α is the power-law exponent, typically $2<\alpha<3$
o Testing for power-law distribution
- If we draw k and $f(k)$ in "log-log" scale, it shows a straight line
- Power-law distribution describe the popularity of nodes in a social network, where a small number of node have a large proportion of connections.

Recap: Small-world Network

o How far apart are nodes in the network?

- Network diameter
o How close a set of nodes connect with each other?
- Clustering coefficient
o Milgram's experiment (1967)
o A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops. [wiki]
o Properties: high clustering, low diameter
- Clustering efficient: much larger than random network
- Diameter: almost equal to random network
o Most of social networks are found to be small-world network.

Properties	Regular Network	Random Network	Social Network	
Degree Distribution	Constant	Normal distribution		-law ution
Path Length (Diameter)	High	Low	Low	Smallworld
Clustering Coefficient	High	Low	High	

Network Models

Why Model Networks?

o Social Networks play a central role in
o transmission of information

- the trade of goods and services
- diseases spread
- which products we buy, which languages we speak, how we vote, ..., etc.
o With various social network analysis techniques, we intend to understand
- how social network structures impact behavior
- which network structures are likely to emerge in a society

An Example: Florentine Marriages

o In the early fifteenth century, Florence had been ruled by several powerful families.
o The Medici have been called the "godfathers of the Renaissance".
o Previously the Strozzi had both greater wealth and more seats in the local legislature, and yet the Medici rose to eclipse them.
o The Medici family consolidated political and economic power by leveraging the central position of the Medici in networks of family inter-marriages.

- To understand the rise in power of Medici, Padgett and Ansell [Padgett 1993] provide analysis to the social network structure.

15th Century Florentine Marriges Data from Padgett and

- puca Ansell [491] (drawn using UCINET)

Degree Centrality: $d_{i}(g) /(n-1)$

o $\mathrm{n}=16$

- $D C($ Strozzi $)=4 / 15$
o DC(Medici)=6/15

Betweenness Centrality:

\# of shortest paths between k and j that i lies on
\# of shortest paths between k and j

$$
C e_{i}^{B}(g)=\sum_{k \neq j: i \notin\{k, j\}} \frac{P_{i}(k j) / P(k j)}{(n-1)(n-2) / 2}
$$

\# of node pairs except i

Average fraction of shortest paths pass the node

o $\mathrm{n}=16$

- $B C($ Strozzi $)=0.103$
- BC(Medici)=0.522
o The Medici lies on over half of the shortest path!
o This analysis shows that network structure can provide important insights beyond those found in other political and economic characteristics.
o The example also illustrates that the network structure is important beyond a simple count of how many social ties each member has, and suggests that different measures of betweenness or centrality will capture different aspects of network structure.

How Networks Form?

o Random Network
o Small-world Network
o Scale-free Network

The Random Network

o Erdös-Renyi Random Graph Model

- A random process
o Fix a set of n nodes, $N=\{1,2, \ldots, n\}$.
- Each link is formed with a given probability p ($0<p<1$), and the formation of links is independent.
o For a given network with m links, the probability that it is formed is $p^{m}(1-p)^{\frac{n(n-1)}{2}-m}$
For example, when $n=3$

o Degree distribution of random Graph
- The probability that any given node i has exactly d links is

$$
\operatorname{Pr}(\mathrm{d})=\binom{n-1}{d} p^{d}(1-p)^{n-1-d}
$$

which is a binomial distribution.
o For large n and small p, this binomial expression is approximated by a Poisson distribution

$$
\operatorname{Pr}(\mathrm{d}) \approx \frac{e^{-(n-1) p}((n-1) p)^{d}}{d!} .
$$

o Such networks are also called Poisson random networks

An example of Poisson random network

- $n=50, p=0.02$

$$
\operatorname{Pr}(\mathrm{d}) \approx \frac{e^{-(n-1) p}((n-1) p)^{d}}{d!}
$$

o This network exhibits a number of features that are common to this range of p and n.

- $\operatorname{Pr}(0) \approx \mathrm{e}^{-49 * 0.02}=0.375$.
- We should expect some isolated nodes. About 37.5 percent of the nodes expected to be isolated (i.e., have $\mathrm{d}=0$). 19 nodes observed.
- The network is a "forest", there are no cycles in the network (the probability is very low)
- There is a giant component (with 16 nodes).

$$
\operatorname{Pr}(\mathrm{d}) \approx \frac{e^{-(n-1) p}((n-1) p)^{d}}{d!}
$$

- $\mathrm{n}=50, \mathrm{p}=0.08$
- $\operatorname{Pr}(0)=e^{-49^{*} 0.08}=0.02$
- We should expect about 2 percent of the nodes to be isolated (with degree 0), or roughly 1 node out of 50 .
o The rest of the network is connected into one component.

Connectivity of Random Graph

o Consider what fraction of nodes are completely isolated; i.e., what fraction of nodes have degree d
$=0$?

$$
\operatorname{Pr}(\mathrm{d}) \approx \frac{e^{-(n-1) p}((n-1) p)^{d}}{d!}
$$

o $\operatorname{Pr}(0)=e^{-(n-1) p}$
o If there is one isolate node, then

$$
\operatorname{Pr}(0)=e^{-(n-1) p}=1 / n
$$

o Solving this equation yields: $(n-1) p=\log (n)$

- The average degree $(n-1) p$ is $\log (n)$.
- When $(n-1) p>\log (n)$, i.e., $p>\log (n) /(n-1)$, the whole graph is connected with high probability.
- For $n=50$, the threshold $\log (n) /(n-1)$ is 0.079 .
- When $p<\log (n) /(n-1)$, the graph will have several components.

Example: Giant Component

- Is the global friendship network connected?
Not necessary, some nodes may have no friends
- Large complex networks often have a giant component, a connected component that contains a significant fraction of all the nodes
- Why only one?
- If there are two, there must not be a single connecting link between nodes in the two components, which is unlikely.

The Small-World Model

- Can we make up a simple model that exhibits both of the features: many closed triads, but also very short paths?
- One-deminsional Model (Watts-Strogatz)
- Starting from a ring lattice with n vertices and k edges per vertex.
- Regular network with high clustering coefficient
- We rewire each edge at random with probability $p(0 \leq p \leq 1)$.
- $\mathrm{p}=0$: regular network
- $p=1$: random network
- Randomizing the network, lowering average path length

A Simple Explanation

- Suppose each person knows 100 other people on a first-name basis
- Step 1: reach 100 people
- Step 2: reach $100 * 100$ people
- ...
- Step 5: reach $100^{5}=10$ billion people
- Ref: the world population is 7.019 billion (Wiki, 2012)
- The numbers are growing by powers of 100
- But it is not true for real network!!!
- Triadic relationships are common
- Social network is highly clustered, not the kind of massively

The Watts-Strogatz Model

o The two-dimensional model: grid
o Two kind of links
o Regular links: Links to the other nodes within a radius of up to r grid steps
o Random: Links to k other remote nodes

o High clustering

$$
C_{i} \geq 2^{* 12 /(8 * 7) \geq 0.43 ~}
$$

o Low diameter: short path exists with high probability

- Since the k remote nodes are random and they barely know each other
- For each step, at lease k new nodes are reached
- The numbers are growing by powers of k
o Still, short path achieves, the diameter is O(logn)

Extension

o Short path still exists even for very small amount of randomness
o For example, instead of allowing each node to have k random friends, we only allow one out of every k nodes to have one random friend
o We can conceptually group k*k subsquares of the grid into "towns"
o It will be similar: each town links to k other towns
o Short path in towns -> short path in people

Small World: Summary

- A network between regular network and random network
- It has high clustering and low diameter
o Clustering efficient: much larger than random network
o Diameter: almost equal to random network
o The Watts Strogatz Model
- Introducing a tiny amount of random links is enough to make the world small, with short paths between every pair of nodes.

The Scale-free Network

o A scale-free network is a network whose degree distribution follows a power law
o Several models for the forming of Scale-free networks

- Rich get Richer Model
- Preferential attachment [Barabási 1999]
o Fitness Model [Bianconi 2001, Kong 2008]

Barabási, A.-L.; R. Albert (1999). "Emergence of scaling in random
networks". Science 286 (5439): 509-512.
Bianconi Ginestra and Barabási A.-L., 2001a, Europhys. Lett. 54, 436.
J.S. Kong, N. Sarshar, V.P. Roychowdhury, "Experience versus Talent Shapes the Structure of the

Rich Get Richer Model

o New nodes are more likely to link to nodes that already have high degree
o Power-laws arise from "Rich get richer"

- We can provide a simple power-law models from consequences of individual decision-making
- We assume simply that people have a tendency to copy the decisions of people who act before them

A Simple Model

o A simple model for the creation of links among Web pages

- Pages are created in order, and named 1; 2; 3; ...;N.
- When page j is created, it produces a link to an earlier Web page i according to:
- 1) With prob. $p(0<p<1)$, j links to i chosen uniformly at random (from among all earlier nodes)
- 2) With prob. 1-p, node j chooses node i uniformly at random and links to a node i points to.
- Note: this is same as saying, with prob. 1-p, node j links to node u with prob. proportional to the degree of u
o The model specifies a randomized process that run for N steps (as the N pages are created one at a time)
o Question: can we determine the expected number of pages with k in-links at the end of the process? (Or analyze the distribution of this quantity?)
o Definition: the number of in-links to a node j at a time step $\mathrm{t}(\mathrm{t} \geq \mathrm{j})$ is a random variable $X_{j}(t)$
o Facts:
- Initial condition: Since node j starts with no in-links when it is first created at time j , so $\quad X_{j}(j)=0$
- The expected change to X_{j} over time
- In step t+1, node j gains an in-link if and only if the link from the newly created node t+1 points to it
- With prob. p, node $t+1$ point to the previous t nodes at random, thus the prob. of linking to node j is p / t
- With prob. (1-p), node $t+1$ links to node j with probability Xj(t)/t
- So the overall probability that node $\mathrm{t}+1$ links to node j is

$$
\frac{p}{t}+\frac{(1-p) X_{j}(t)}{t}
$$

o In step t+1, the probability of a new link

$$
\frac{p}{t}+\frac{(1-p) X_{j}(t)}{t}
$$

o How to calculate $X_{j}(t)$?
o Approximation
o Treat it as a deterministic continuous function $x_{j}(t)$

- From step t to step t+1 can be viewed as the differential of the function, thus

$$
\frac{d x_{j}}{d t}=\frac{p}{t}+\frac{(1-p) x_{j}}{t}
$$

o Solving the differential equation

$$
\frac{d x_{j}}{d t}=\frac{p}{t}+\frac{(1-p) x_{j}}{t}
$$

o Let $q=1-p$, rewriting it as

$$
\frac{1}{p+q x_{j}} \frac{d x_{j}}{d t}=\frac{1}{t}
$$

o Integrating both sides

$$
\ln \left(p+q x_{j}\right)=q \ln t+c
$$

o Applying the initial condition $x_{j}(j)=0$ yields

$$
x_{j}(t)=\frac{1}{q}\left(\frac{p}{j^{q}} \cdot t^{q}-p\right)=\frac{p}{q}\left[\left(\frac{t}{j}\right)^{q}-1\right]
$$

$$
x_{j}(t)=\frac{1}{q}\left(\frac{p}{j^{q}} \cdot t^{q}-p\right)=\frac{p}{q}\left[\left(\frac{t}{j}\right)^{q}-1\right]
$$

o $x_{j}(t)$ is the degree of node j at time t
o What is the fraction of nodes whose degree $\geq k$?

- If a node's dearee no smaller than k , it satisfies

$$
x_{j}(t)=\frac{p}{q}\left[\left(\frac{t}{j}\right)^{q}-1\right] \geq k,
$$

- Solving the inequality, we have $j \leq t\left[\frac{q}{p} \cdot k+1\right]$
- Since there are t nodes at time t. the fraction of nodes is:

$$
\frac{1}{t} \cdot t\left[\frac{q}{p} \cdot k+1\right]^{-1 / q}=\left[\frac{q}{p} \cdot k+1\right]^{-1 / q}
$$

o What is the fraction of nodes with degree exactly k?

- Take derivative of the equation, we get $\frac{1}{q} \frac{q}{p}\left[\frac{q}{p} \cdot k+1\right]^{-1-1 / q}$
$\substack{\begin{subarray}{c}{0 \\ \text { werv } \\ \text { WRks }} }} \end{subarray}$ it is a power-law distribution with exponent $1+\frac{1}{q}=1+\frac{1}{1-p}$

Summary

o How Networks Form?
o Random Network

- Erdös-Renyi Random Graph Model
o Small-world Network
- The Watts-Strogatz Model
o Scale-free Network
- Rich Get Richer Model

