Network Layer – Part I (Addendum)

Telematics, Winter 2009/2010

IP Fragmentation and Reassembly

Example

Includes header!

- ⇒ 3980 byte of data
- ⇒ fragmented into

1500 (1480+20)

1500 (1480+20)

1040 (1020+20)

length	ID	fragflag	offset	
=4000	=X	=0	=0	

One large datagram becomes several smaller datagrams

	1 41	1	4 41		
	length	טון	fragflag	offset	
•	=1500	=X	=1	=185	

length	ID	fragflag	offset	
=1040	=X	=0	=370	

How to fragment an already fragmented datagram

- Max. MTU = 820
- Incoming datagram:

Len =	ID =	MF =	Offset =	
 1500	X	1	185	

Outgoing datagrams:

	Len =	ID =	MF =	Offset =	
•••	820	X	1	185	•

Len =	ID =	MF =	Offset =	
 700	X	1	285	

IPv4 vs IPv6

A diagram demonstrating the massive growth in address space under each protocol.

Each cascading block is a magnification of a tiny area in the preceding block, represented by a black square.

Image is to scale, except the black area is enlarged for ease of viewing

