Exercise 3

Stephan Sigg stephan.sigg@cs.uni-goettingen.de

Pathloss with different wireless technologies

Jennic sensor node: mobile station:
GSM base station:
DAB transmitter:
DVB-T transmitter: Bluetooth transmitter: Wlan transmitter:

3dBm transmission power (antenna gain 0dBi) transmits at 2W in GSM (antenna gain 0dBi)
transmits at 10W (antenna gain 3dBi)
1 kW EIRP (230 MHz)
EIRP of $10 \mathrm{~kW}(800 \mathrm{MHz})$
2.5 mW EIRP (2.4 GHz)

100 mW EIRP (2.4 GHz)

Calculate the signal strength in a distance of

- 10 cm
- $1 m$
- 1 km
- 10km

Assume that the receiver has an antenna gain of 0dBi.
Note: Antenna gain of a DVB-T roof-mounted antenna with 800 MHz : 12 dB . Indoor antenna: -2 to 0 dB)

Pathloss with different wireless technologies

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{E}}=\mathrm{P}_{\mathrm{S}}\left(\frac{\lambda}{4 \pi \cdot \mathrm{~d}}\right)^{2} \mathrm{G}_{\mathrm{S}} \mathrm{G}_{\mathrm{E}}=\mathrm{ERP} \cdot\left(\frac{\lambda}{4 \pi \cdot \mathrm{~d}}\right)^{2} \mathrm{G}_{\mathrm{E}} \\
& 900 \mathrm{MHz} \rightarrow \lambda=0.33 \mathrm{~m} \\
& 800 \mathrm{MHz} \rightarrow \lambda=0.375 \mathrm{~m} \\
& 230 \mathrm{MHz} \rightarrow \lambda=1.30 \mathrm{~m} \\
& 2.4 \mathrm{GHz} \rightarrow \lambda=12.5 \mathrm{~cm}
\end{aligned}
$$

	10 cm	1 m	1 km	10 km
Mobile phone	0.1379 W	0.0014 W	$0.001 \mu \mathrm{~W}$	1.379 $\cdot 10^{-5} \mu \mathrm{WW}$
Base station	1.379 W	0.014 W	$0.01 \mu \mathrm{~W}$	1.379 $\cdot 10^{-4} \mu \mathrm{~W}$
DAB	$1070,21 \mathrm{~W}$	10.7021 W	$10.7021 \mu \mathrm{~W}$	$0.0107021 \mu \mathrm{~W}$
DVB-T	890.518 W	8.905 W	$8.905 \mu \mathrm{~W}$	$0.089 \mu \mathrm{~W}$
Bluetooth	0.024 mW	$0.24 \mu \mathrm{~W}$	$2.4 \cdot 10^{-13} \mathrm{~W}$	$0.024 \cdot 10^{-13} \mathrm{~W}$
Wlan	0.989 mW	$98.9 \mu \mathrm{~W}$	$9.89 \cdot 10^{-12} \mathrm{~W}$	$9.89 \cdot 10^{-14} \mathrm{~W}$

CDMA encoding and decoding

Consider four senders A, B, C, and D. Which are assigned the following chip sequences:

$$
\begin{aligned}
& \mathrm{A}_{\text {chip }}=11110000 \\
& \mathrm{~B}_{\text {chip }}=11000011 \\
& \mathrm{C}_{\text {chip }}=10011001 \\
& \mathrm{D}_{\text {chip }}=10010110
\end{aligned}
$$

The data sequences to transmit are

$$
\begin{aligned}
& \mathrm{A}_{\text {data }}=00 \\
& \mathrm{~B}_{\text {data }}=11 \\
& \mathrm{C}_{\text {data }}=10 \\
& \mathrm{D}_{\text {data }}=01
\end{aligned}
$$

a)Calculate the combined and encoded sequence obtained at a receiver
b)Demonstrate the decoding of the respective sequences at the four receive nodes

CDMA encoding and decoding

Thermal noise

Estimate the thermal noise in an indoor environment (assume a room temperature of $20^{\circ} \mathrm{C}$) for a 1 Mhz signal.

Thermal noise

Noise

- Thermal noise can also be estimated analytically as

$$
P_{N}=\kappa \cdot T \cdot B
$$

- $\kappa=1.3807 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$: Boltzmann constant
- T : Temperature in Calvin
- B: Bandwidth of the signal.

CSMA/CA

How does CSMA/CA tackle the problem of collisions (what steps are taken at the sender and receiver respectively)?

CSMA/CA

Sender:

Sense channel
If idle for a certain amount of time (802.11:
DIFS, $\sim 50 \mu \mathrm{~s}$) transmit entire frame
If busy, start exponential backoff (see last weeks exercise)

Receiver:

If frame received OK, return ACK after waiting a certain amount of time (802.11: SIFS, ~10 $\mu \mathrm{s}$)

Hidden terminal problem

