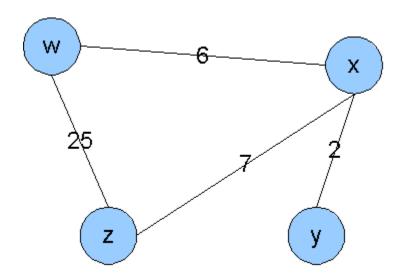

Homework #5

(Due on November 24th 2016)


Q1. Given the following network, use Dijkstra's algorithm to find the least cost paths from node u. Please provide a table showing the steps of the algorithm, a graph showing the resulting shortest-path tree from u and the final forwarding table of u.

Step	N'	D(v), p(v)	D (w), p(w)	D(x), p(x)	D (y), p(y)	D(z), p(z)

Resulting shortest-path tree V W Resulting forwarding table in u Destination Link Z V

Q2. Given the following network, use the Distance Vector algorithm to find the least cost paths for all nodes. Fill the provided tables and indicate with arrows between the tables when a node sends a distance vector to another node.

Computer Networks Group University of Göttingen, Germany

No	de	cost to			No	de		cos	t to		No	de		cos	t to		No	de		cos	t to		
V	V	W	X	y	z	V	V	W	X	y	Z	v	V	W	X	y	Z	v	V	W	X	y	Z
	w						w						w						W				
m	X					from	X					from	X					Ш	X				
from	у					frc	y					frc	y					from	у				
	Z						Z						Z						Z				

No	de		cos	t to		No	de	cost to				No	de		cos	t to		No	de	cost to				
X		W	X	y	Z	X		W	X	y	Z	X		W	X	y	Z	X		w	X	y	Z	
	w						w						W						w					
m	X					m	X					Ш	X					Ш	X					
from	у					from	y					from	y					from	y					
	Z						Z						Z						Z					

No	ode	cost to			No	de		cos	t to		No	de		cos	t to		No	de		cos	t to		
,	y	W	X	y	Z	3	y		X	y	Z	y		W	X	y	Z	y		W	X	y	Z
	w						w						w						w				
from	X					m	X					m	X					m	X				
fro	y					from	y					from	y					from	y				
	Z						Z						z						Z				

No	de		cos	t to		No	de		cos	t to		No	de		cos	t to		No	de		cos	st to	
7	Z	W	X	y	z	Z		W	X	y	Z	7	Z	W	X	y	Z	Z		w	X	y	Z
	w						w						w						w				
Ш	X					from	X					m	X					m	X				
from	y					fro	y					from	y					from	y				
	Z						Z						Z						Z				

Computer Networks Group University of Göttingen, Germany

- Q3. Compare Link State routing algorithms to Distance Vector algorithms in terms of scalability and robustness.
- Q4. Explain the count-to-infinity problem using a simple example. How can this problem be avoided?
- Q5. How are routing policies used in BGP. Give one example.
- Q6. What is the difference between Intra-AS and Inter-AS routing? Why are different routing protocols needed for each? Name one example for each category.