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Linear regression

h(x) = w0 + w1x
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Linear regression

h(x) = w0 + w1x

How to choose the parameter w0 and w1?
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Linear regression

h(x) = w0 + w1x

Cost function to estimate the quality of the current solution
(Gradient descent).
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h(x) = w0 + w1x

minimize E [w0,w1] = 1
2n

∑n
i=1 (h(xi )− yi )

2
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Gradient descent cost function – intuition

h(x) = w0 + w1x

minimize E [w0,w1] = 1
2n

∑n
i=1 (h(xi )− yi )

2

For fixed w1 this is a function of x
(additive constant w0 ignored in this figure)
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h(x) = w0 + w1x
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(additive constant w0 ignored in this figure)
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Gradient descent cost function – Gradient descent

minimize E [w0,w1] = 1
2n

∑n
i=1 (h(xi )− yi )

2

E.g.:w1 = w1 − δ ·
∂

∂w1
E [w0,w1]

Iterative approximation of w1
Machine Learning and Pervasive Computing
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Least squares estimation

Given an error function

E [w0,w1] =
n∑

i=1

(yi − (w0 + w1x))2

we can minimize the error by requiring

∂E

∂w0
= 0,

∂E

∂w1
= 0
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Least squares estimation
Given an error function

E [w0,w1] =
n∑

i=1

(yi − (w0 + w1x))2

we can minimize the error by requiring

∂E

∂w0
= 0,

∂E

∂w1
= 0

Differentiation yields

∂E

∂w0
=
∑n

i=1 2 (yi − (w1xi + w0)) · 1

∂E

∂w1
=
∑n

i=1 2 (yi − (w1xi + w0)) · (−xi )
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Least squares estimation

∂E

∂w0
=
∑n

i=1 2 (yi − (w1xi + w0)) · 1

∂E

∂w1
=
∑n

i=1 2 (yi − (w1xi + w0)) · (−xi )

Setting

∂E

∂w0
=

∂E

∂w1
= 0

will lead to
n∑

i=1

(yi − (w1xi + w0)) · xi = 0

n∑
i=1

(yi − (w1xi + w0)) = 0
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Least squares estimation

n∑
i=1

(yi − (w1xi + w0)) · xi = 0

n∑
i=1

(yi − (w1xi + w0)) = 0

rewrite as (
n∑

i=1

x2i

)
w1 +

(
n∑

i=1

xi

)
w0 =

∑n
i=1 xiyi(

n∑
i=1

xi

)
w1 +

(
n∑

i=1

1

)
w0 =

∑n
i=1 yi
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Least squares estimation

(
n∑

i=1

x2i

)
w1 +

(
n∑

i=1

xi

)
w0 =

∑n
i=1 xiyi(

n∑
i=1

xi

)
w1 +

(
n∑

i=1

1

)
w0 =

∑n
i=1 yi

Consequently, values of w0 and w1 that minimize the error satisfy( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 1

)(
w1

w0

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)
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Least squares estimation

( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 1

)(
w1

w0

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)
for an invertible matrix this implies(

w1

w0

)
=

( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 1

)−1( ∑n
i=1 xiyi∑n
i=1 yi

)
By solving this linear equation system, optimal values of w0 and w1

can be determined.
However, for least squares to be applicable, it is necessary that the
matrix is invertible.
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Least squares estimation

( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 1

)(
w1

w0

)
=

( ∑n
i=1 xiyi∑n
i=1 yi
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w1

w0

)
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( ∑n
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2
i

∑n
i=1 xi∑n

i=1 xi
∑n
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)
By solving this linear equation system, optimal values of w0 and w1

can be determined.
However, for least squares to be applicable, it is necessary that the
matrix is invertible.
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Polynomial regression (Polynomial curve fitting)

Example

A curve shall be approximated by a machine learning approach

Sample points are created for the function sin(2πx) +N where N
is a random noise value
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Polynomial curve fitting

We will try to fit the data points into a polynomial function:

h(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j
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Polynomial curve fitting

We will try to fit the data points into a polynomial function:

h(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

This can be obtained by minimising an error function that
measures the misfit between h(x ,−→w ) and the training data set:

E (−→w ) =
1

2

N∑
i=1

[
h(xi ,

−→w )− yi
]2

E (−→w ) is non-negative and zero if and only if all points are covered
by the function
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Polynomial curve fitting

One problem is the right choice of the dimension M

When M is too small, the approximation accuracy might be bad
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Polynomial curve fitting

However, when M becomes too big, the resulting polynomial will
cross all points exactly

When M reaches the count of samples in the training data set, it is
always possible to create a polynomial of order M that contains all
values in the data set exactly.
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Polynomial curve fitting
This event is called overfitting

The polynomial is now trained too well to the training data

It will therefore perform badly on another sample of test data for
the same phenomenon

We visualise it by the Root of the Mean Square (RMS) of E (−→w )

ERMS =

√
2E (−→w )

N
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Polynomial curve fitting

With increasing number of data points, the problem of overfitting
becomes less severe for a given value of M
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Polynomial curve fitting

One solution to cope with overfitting is regularisation

A penalty term is added to the error function

This term discourages the coefficients of −→w from reaching large
values

E (−→w ) =
1

2

N∑
i=1

[
h(xi ,

−→w )− yi
]2

+
λ

2
||−→w ||2

with
||−→w ||2 = −→w T−→w = w2

0 + w2
1 + · · ·+ w2

M
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Polynomial curve fitting

Depending on the value of λ, overfitting is controlled

E (−→w ) =
1

2

N∑
i=1

[
h(xi ,

−→w )− yi
]2

+
λ

2
||−→w ||2
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Multivariable linear regression

In multivariable linear regression problems we assume that multiple
regression variables (features) apply.

h(x1, . . . , xm) =
∑m

i=0 wixi

minimize E [W ] = 1
2n

∑n
i=1 (h(xi )− yi )

2
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Multivariable linear regression

In multivariable linear regression problems we assume that multiple
regression variables (features) apply.

h(xj1, . . . , xjm) =
m∑
i=0

wixji

minimize E [W ] =
1

2n

n∑
j=1

(h(xj1, . . . , xjm)− yj)
2
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Multivariable linear regression
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Multivariable linear regression
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Multivariable linear regression
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h(xj1, . . . , xjm) =
m∑
i=0

wixji

minimize E [W ] =
1

2n

n∑
j=1

(h(xj1, . . . , xjm)− yj)
2

E.g.:wi = wi − δ ·
∂

∂wi
E [W ]

wi are optimised together over several iterations
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h(xj1, . . . , xjm) =
m∑
i=0

wixji

minimize E [W ] =
1

2n
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(h(xj1, . . . , xjm)− yj)
2

E.g.:wi = wi − δ ·
∂

∂wi
E [W ]

wi are optimised together over several iterations

Machine Learning and Pervasive Computing



Linear regression Least squares Polynomial regression Multivariable Multivariate Logistic regression

Local optima
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Local optima – contour plot
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Multivariate linear regression

Multivariate linear regression describes a regression problem with
multiple classes.

Example e.g. from accelerometer data

Activities walking, standing, climbin/descending stairs, ...

Sentiment emotional states

Transportation mode office, riding tram, driving ...

Location Home, office, ...
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Multivariate linear regression

Regression model is extended to multiple responses with respect to
one class: Yj = yj1, . . . , yjl

yj1 = w01 + w11xj1 + · · ·+ wn1xjn

yj2 = w02 + w12xj1 + · · ·+ wn2xjn
...

...

yjl = w0l + w1lxj1 + · · ·+ wnlxjn
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Multivariate linear regression

Regression model is extended to multiple responses with respect to
one class: Yj = yj1, . . . , yjl

yj1 = w01 + w11xj1 + · · ·+ wn1xjn

yj2 = w02 + w12xj1 + · · ·+ wn2xjn
...

...

yjl = w0l + w1lxj1 + · · ·+ wnlxjn

It is then possible to estimate the regression coefficients associated
with yji using only the i-th row of the matrix.
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Multivariate linear regression

It is then possible to estimate the regression coefficients associated
with yji using only the i-th row of the matrix.

Wi =
(
XTX

)−1
XTY(i)

and collecting all univariate estimates into a matrix

W =
(
XTX

)−1
XTY

Y(i) is the vector of n measurements of the i-th variable

XT denotes the transpose of X and X−1 its inverse

Machine Learning and Pervasive Computing
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Multivariate linear regression

The least squares estimator for W minimizes the sums of squares
elements on the diagonal of the residual sum of squares and
crossproducts matrix (Y − XW )T (Y − XW )
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Logistic regression
Nominal classes

Classes might be nominal in real-world problems

Weather Sunny, rainy
Medical positive diagnosis, negative diagnosis

Localisation indoor, outdoor

In such case, classification is binary: y ∈ {0, 1}

Linear regression: h(x) can be smaller than 0 or greater than 1

Logistic regression: 0 ≤ h(x) ≤ 1
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Logistic regression
Cost function

Linear regression
h(x) = W T x

Logistic regression
h(x) = 1

1+eWT x

y =

{
1 if h(x) ≥ 0.5
0 else
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Logistic regression
Cost function

y =

{
1 if h(x) ≥ 0.5
0 else

E [h(x), y ] =

{
− log(h(x)) if y = 1
− log(1− h(x)) else
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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