Telematics Homework \#11

Florian Tegeler 27 January 2011

Announcements

- Final exam: Thursday 10.02.2011 - 10:00-12:00 : GZG - MN08
- Language: English + German, answers possible in both languages
- No additional resources (calculator etc.) allowed. Just bring pens ;).
- Register with FlexNow till 3rd of February!

Exercise Exam + Q\&A

- Exercise exam
- Available in wiki
- Intended for self-study; there will be no answer sheet or exercise session
- Question and Answer Session
- 3 February 2011, 10:15h
- Entirely for your benefit!
- If there are no questions, there will be no answers
- If you want a well prepared answer, please send us an email in advance

NetSec

- What are the security concerns network security is targeting at? What main areas of protection does network security cover?

Confidentiality
Authentication
Message integrity
Access and availability

Cryptopgraphy

- What are the two main types of cryptography?
- Symmetric crypto (encryption + decryption with the same key): DES, 3DES, AES etc.
- Asymmetric crypto (enc and dec with different keys): RSA, Public/Private keying, DiffieHellman

Authentication

- What is a man-in-the-middle attack? Is public key cryptography save against that type of attack?

- Asymmetric keying only helpful if public keys are pre-known or certificate bound.

Authentication

- What other tricks does attackers use to overcome authentication protection? Please explain using the AP protocols presented in the lecture.
- AP 1.0/2.0): Just faking IDs ("I am Alice") or spoofing an IP address
- Often record and playback attacks as in AP 3.0/3.1

Nonce

- What is the purpose of a nonce in an endpoint authentication protocol?
- Brings freshness
- Prevents replay attacks Example:

$$
\{X\}\left\{\log ^{2}\right\}
$$

RSA

- Perform an RSA encryption and decryption with $p=7$ and $\mathrm{q}=11$ with the word "Telematics".
$\mathrm{n}=7^{*} 11=77$ (prime factors 7,11)
$\mathrm{z}=(7-1)(11-1)=60$ (prime factors $2,2,3,5$)
e needs to be chosen in a way, that it has no common prime factors with z

$$
e=7
$$

now we search for a d with $e^{*} d-1 \bmod z=0$. With $d=43$ we have $e^{*} d-1 \bmod 60=300 \bmod 60=5$

Klartext		$\mathrm{m}^{\wedge} \mathrm{e}$	$\begin{array}{r} \text { chiffre }=\mathrm{m}^{\wedge} \mathrm{e} \\ \bmod \mathrm{n} \\ \hline \end{array}$	c^{\wedge} d (here: chiffre ^46)	$c^{\wedge} \mathrm{d} \bmod \mathrm{n}$
a	1	1	1	1	1
b	2	128	51		
c	3	2187	31	13444753212776963019174122373997438185440200300120230113873520991	3
d	4	16384	60		
E	5	78125	47	794708560552308362507026214655083140659880205559381016431673633560574223	5
F	6	279936	41		
G	7	823543	28		
H	8	2097152	57		
i	9	4782969	37	27081588506598106040982953896258749653831334409506086433262944331453	9
i	10	10000000	10		
k	11	19487171	11		
I	12	35831808	12	25397652694505813866070015990659936347412758528	12
m	13	62748517	62	118261299920216034323567158324881157722618355000741423528102151243191317168128	13
n	14	105413504	42		
0	15	170859375	71		
p	16	268435456	58		
q	17	410338673	52		
r	18	612220032	39		
S	19	893871739	68	6278895373298528368344913294912019325279912443533041880115104685557599470354432	19
t	20	1280000000	48	1965048198399560713177500537391830916254451560885426333004585474449211392	20
u	21	1801088541	21		
v	22	2494357888	22		
w	23	3404825447	23		
x	24	4586471424	73		
y	25	6103515625	53		
Z	26	8031810176	5		

Telematics $=484712476201483768$

[^0]We are encrypting letter by letter, remember cipher algos and consider large m !

Hashes

- What is the conceptual difference between a crypto-hash function and other hash functions?
- computationally infeasible to find two different messages, x, y such that $H(x)=H(y)$
- equivalently: given $m=H(x)$, (x unknown), can not determine x.
- SHA-1, MD5 operate without a shared secret
- Additionally, key based Hash-based MACs (HMACs) HMAC-MD5 or HMAC-SHA1 available e.g. for signatures

Thank you

Any questions?

[^0]: $\left.\mathrm{N}^{-} \mathrm{E}^{-1} \mathbf{T}^{-}()\right)$
 WOR-KS

