
Machine Learning and Pervasive Computing

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

15.06.2015



Histogram Parzen Estimator k-NN

Overview and Structure
13.04.2015 Organisation
13.04.2015 Introduction
20.04.2015 Rule-based learning
27.04.2015 Decision Trees
04.05.2015 A simple Supervised learning algorithm
11.05.2015 –
18.05.2015 Excursion: Avoiding local optima with random search
25.05.2015 –
01.06.2015 High dimensional data
08.06.2015 Artificial Neural Networks
15.06.2015 k-Nearest Neighbour methods
22.06.2015 Probabilistic models
29.06.2015 Topic models
06.07.2015 Unsupervised learning
13.07.2015 Anomaly detection, Online learning, Recom. systems

2 / 48

15.06.2015 Stephan Sigg Machine Learning and Pervasive Computing



Histogram Parzen Estimator k-NN

Recap: Decision tree
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Recap: Polynomial curve fitting

Fit data points to a polynomial function:

h(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j
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Recap: Support vector machines (SVM)

min
W

1
2

∑n
j=1 w

2
j = 1

2

(√
w2
1 + · · ·+ w2

n

)2

=
1

2
||W ||2

s.t. W T xi ≥ 1 if yi = 1 → ||W || · pi ≥ 1

W T xi ≤ −1 if yi = 0 → ||W || · pi ≤ −1

Which decision boundaray is found?

h(x) = w1x1 + w2x2

→ W orthogonal to all x with h(x) = 0

⇒ min 1
2 ||W ||

2 and ||W || · pi ≥ 1
necessitate larger pi
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Recap: Neural networks

hk(−→x ,−→w ) = f (3)act
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Nearest neighbour methods

Instance-based learning

In instance-based learning, classification is not
derived from rules or functions but from the
instances themselves
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Outline

Histogram methods

Parzen Estimator methods

Nearest neighbour techniques
Distance calculation
kD-trees
Ball trees
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Histogram methods
Alternative approach to function estimation: histogram methods

In general, the probability density of an event is estimated by
dividing the range of N values into bins of size ∆i

Then, count the number of observations that fall inside bin ∆i

This is expressed as a normalised probability density

pi =
ni

N∆i
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Histogram methods

Accuracy of the estimation is dependent on the width of the bins

Approach well suited for big data since the data items can be
discarded once the histogram is created
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Parzen estimator methods

Assume an unknown probability density P(·)

Considering a small region R around −→x :

P =

∫
R
P(−→x )d−→x
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Parzen estimator methods

With the binomial distribution we can express the probability that
K out of N ponts fall into R:

Bin(K |N,P) =

(
N
K

)
PK (1− P)N−K

=
N!

K !(N − K )!
PK (1− P)N−K
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Parzen estimator methods

For large N we can show

K ≈ NP

With sufficiently small R we can also show for the volume V
of R

P ≈ P(−→x )V

Therefore, we can estimate the density as

P(−→x ) =
K

NV
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Parzen estimator methods

We assume that R is a small hypercube

In order to count the number K of points that fall inside R we
define

k(−→u ) =

{
1, ||ui || ≤ 1

2 , i = 1, . . . ,D,
0, otherwise

This represents a sphere with diameter 1 centred around the origin

This function is an example of a Parzen window
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Parzen estimator methods

k(−→u ) =

{
1, |ui | ≤ 1

2 , i = 1, . . . ,D,
0, otherwise

When the measured data point −→xn lies inside a sphere of radius h
centred around −→x , we have

k

(−→x −−→xn
h

)
= 1

The total count K of points that fall inside this sphere is

K =
N∑

n=1

k

(−→x −−→xn
h

)
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Parzen estimator methods

The total count K of points that fall inside this cube is

K =
N∑

n=1

k

(−→x −−→xn
h

)
When we substitute this in the density estimate derived above

P(−→x ) =
K

NV

with volume V = hD we obtain the overall density estimate as

P(−→x ) =
1

N

N∑
n=1

1

hD

(−→x −−→xn
h

)
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Parzen estimator methods

P(−→x ) =
1

N

N∑
n=1

1

hD

(−→x −−→xn
h

)
Again, this density estimator suffers from artificial discontinuities
(Due to the fixed boundaries of the sphere)

Problem can be overcome by choosing a smoother kernel function
(A common choice is a Gaussian kernel with a standard deviation σ)

P(−→x ) =
1

N

N∑
n=1

1

(2πσ2)
D
2

e−
||−→x −−→xn ||2

2σ2
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Parzen estimator methods

Density estimation for various values of σ
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Nearest neighbour methods
A problem with Parzen estimator methods is that the parameter
governing the kernel width (h or σ) is fixed for all values −→x

In regions with

...high density, a wide kernel might lead to over-smoothing

...low density, the same width may lead to noisy estimates
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Nearest neighbour methods

NN-methods address this by adapting width to data density

Parzen estimator methods fix V and determine K from the data
Nearest neighbour methods fix K and choose V accordingly

Again, we consider a point −→x and estimate the density P(−→x )

The radius of the sphere is increased until K data points (the
nearest neighbours) are covered
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Nearest neighbour methods

The value K then controls the amount of smoothing

Again, an optimum value for K exists
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Recap: Conditional probability

Conditional probability

The conditional probability of two events χ1 and χ2 with
P(χ2) > 0 is denoted by P(χ1|χ2) and is calculated by

P(χ1|χ2) =
P(χ1 ∩ χ2)

P(χ2)

P(χ1|χ2) describes the probability that event χ2 occurs in the
presence of event χ2.
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Recap: Bayes rule

With the notion of conditional probability we can express the effect
of observed data −→a = a1, . . . , aN on a probability distribution of−→
b : P(

−→
b ).

Thomas Bayes described a way to evaluate the uncertainty of
−→
b

after observing −→a

P(
−→
b |−→a ) =

P(−→a |
−→
b )P(

−→
b )

P(−→a )

P(−→a |
−→
b ) expresses how probable a value for −→a is given a fixed

choice of
−→
b
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Nearest neighbour methods

Classification: Apply KNN-density estimation for each class

Assume data set of N points with Nk points in class Ck

To classify sample −→x , draw a sphere containing K points around −→x

Sphere can contain other points regardless of their class

Assume sphere has volume V and contains Kk points from Ck
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15.06.2015 Stephan Sigg Machine Learning and Pervasive Computing



Histogram Parzen Estimator k-NN

Nearest neighbour methods
Assume: Sphere of volume V contains Kk points from class Ck

We estimate the density of class Ck as

P(−→x |Ck) =
Kk

NkV

The unconditional density is given as

P(−→x ) =
K

NV
The probability to experience a class Ck is given as

P(Ck) =
Nk

N

With Bayes theorem we can combine this to achieve

P(Ck |−→x ) =
P(−→x |Ck)P(Ck)

P(−→x )
=

Kk

K

27 / 48

15.06.2015 Stephan Sigg Machine Learning and Pervasive Computing



Histogram Parzen Estimator k-NN

Nearest neighbour methods
Assume: Sphere of volume V contains Kk points from class Ck

We estimate the density of class Ck as

P(−→x |Ck) =
Kk

NkV

The unconditional density is given as

P(−→x ) =
K

NV
The probability to experience a class Ck is given as

P(Ck) =
Nk

N

With Bayes theorem we can combine this to achieve

P(Ck |−→x ) =
P(−→x |Ck)P(Ck)

P(−→x )
=

Kk

K 27 / 48

15.06.2015 Stephan Sigg Machine Learning and Pervasive Computing



Histogram Parzen Estimator k-NN

Nearest neighbour methods

P(Ck |−→x ) =
P(−→x |Ck)P(Ck)

P(−→x )
=

Kk

K

To minimise the probability of misclassification, assign −→x to class
with the largest probability

This corresponds to the largest value of

Kk

K

28 / 48

15.06.2015 Stephan Sigg Machine Learning and Pervasive Computing



Histogram Parzen Estimator k-NN

Nearest neighbour methods

To classify a point, we identify the K nearest points

And assign the point to the class having most representatives in
this set
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Nearest neighbour methods

Classification of points by the K-nearest neighbour classifier
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Nearest neighbour methods

Classification of points by the K-nearest neighbour classifier
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Nearest neighbour methods

Instance-based learning

In instance-based learning, classification is not
derived from rules or functions but from the
instances themselves

Nearest neighbour classification New instances are compared with
existing ones and nearest neighbours are used to
predict a class

k-nearest neighbour Majority vote among k nearest neighbours
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Nearest neighbour methods

Storage demands KNN and Parzen-method are not well suited for
large data sets since they require the entire data set
to be stored

Instance-based learning Distance function to determine which
member of a training set is closest to an unknown
test instance

How to calculate the distance?

Low Classification speed The intuitive way to find nearest
neighbours involves linear comparison to all training
examples

⇒ Can we store and process data more efficiently?
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Nearest neighbour methods
Distance function

Most instance-based learners utilise Euclidean
distance:√

(v1 − v ′1)2 + (v2 − v ′2)2 + · · ·+ (vk − v ′k)2

It is important to think of actual instances and what it means
for them to be separated by a certain distance
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Nearest neighbour methods
Distance function

Most instance-based learners utilise Euclidean
distance:√

(v1 − v ′1)2 + (v2 − v ′2)2 + · · ·+ (vk − v ′k)2

Alternatives: Manhattan Distance

(v1 − v ′1) + (v2 − v ′2) + · · ·+ (vk − v ′k)

Powers higher than square
Increase the influence of large differences at the
expense of small differences

It is important to think of actual instances and what it means
for them to be separated by a certain distance 34 / 48
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Nearest neighbour methods
Different scales

Different features often follow different scales.

Normalize! It is usually a good idea to normalize all features first

featurei =
vi −min(vi )

max(vi )−min(vi )
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Nearest neighbour methods
Nominal features

Nominal features that take symbolic rather than numeric values,
have to be handled differently

Common solution :

Features with identical value Distance = 0
Features with different value Distance = 1

More expressive metric: e.g. hue in color space for colors
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Nearest neighbour methods
Missing feature values

For missing feature values, commonly the distance is chosen
as large as possible

(if both are missing, Distance= 1, if only one is missing:)

Nominal features Distance = 1
Numeric features Distance = max(v ′, 1− v ′) (where v ′ is the

(normalized) value to compare to)
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Nearest neighbour methods
Finding nearest neighbours efficiently

Instance-based learning is often slow

Intuitive way to find nearest neighbour is to iteratively
compare to all training examples

More efficient search for nearest neighbour possible by kD-tree

Binary tree that stores points from k-dimensional space
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Nearest neighbour methods

kD-Trees

→ Each region contains 0-1 points

→ Every point in the training set correpsonds to a sigle node

→ up to half the nodes are at the leaves of the tree
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Nearest neighbour methods

Find nearest Neighbour in a kD-Tree :

1 Treverse the nodes of the tree to locate the
region containing the point

2 Check parent nodes and other siblings of the
parent for their distance to the point

might be necessary to recursively repeat for
parent node
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Nearest neighbour methods
Creating good kD-Trees

Unbalanced trees lead to low efficiency gain
Backtracking cost is lowest for approximately square regions

Find dimension for a split

Calculate variance of data points along each axis individually

Select axis with greatest variance and create hyperplane
perpendicular to it

Split perpendicular to direction of greatest spread

Find good first instance for a split

Calculate median along that axis and select the corresponding
point

Half of the points lie on either side of the split

41 / 48
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Nearest neighbour methods
Creating good kD-Trees
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Nearest neighbour methods
kD-trees – online updates

On-line learning with kD-trees is possible by appending new
samples to an existing tree

Traverse each new sample down to a leaf of an existing tree to
find its hyperrectangle

If empty place new point there
else Split hyperrectangle along its longest dimension
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Nearest neighbour methods
kD-trees – high dimensions

A problem with kD-trees

Especially in higher dimensions:

Corners of rectangles may contain points farther to the center
of the enclosing rectangle than to other rectangles

Then, unnecessarily many branches of the tree are considered
which reduces efficiency
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Nearest neighbour methods
Ball trees

Ball trees

Use hyperspheres not hyperrectangles

Binary tree

Each node defines the center and radius of the smallest
hypersphere that contains all nodes of its sub-trees

Recursive construction: Split data into two sets along the
dimension with greatest spread (split at median
point)

44 / 48

15.06.2015 Stephan Sigg Machine Learning and Pervasive Computing



Histogram Parzen Estimator k-NN

Nearest neighbour methods
Ball trees
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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