SOFTWARE-DEFINED NETWORKING
SESSION V

“The first thing we hear from customers is, 'We
see security as the No. 1 inhibitor to SDN’ “

- Matthew Palmer, Co-Founder SDN Central

SDN and Security

* SDN research: lots of new concepts

* A lot of functionality implemented in software
* E.g., controller, virtual switches, SDN applications

* Many proposals to use SDN to increase security

* But what about protection against attacks on SDN?
* Software components = easy targets!?

WORKS

Tenant impersonation

Tenants
Communication hijacking Application plane

Management
module

APl abuse

& Configuration Log < Information leakage

= SDN applications Control logic

Q Hardware I Software < App manipulation

Control plane

Configuration Log

Control logic Net topology
< MNetwork manipulation

Hardware Software

Management
plane

k elements

Data plane

f Configuration Flow rules

= Q

Hardware | Software

LN
—
o
(@]
]
[%2]
>
oo
=)
<<
=
2
>
U
o
>
a0
O
o
c
<
]
|_
c
o
[%2]
2]
O
"=
L

=y 7
=)
)
)

hijacking
Communication

impersonation
Communication
Compromised
network
hijacking
MNetwork
manipulation

Compromised
system

N
<
=
o>
=
S
O

'9/-¥T {(STOC) T°€0T 373/ 3y1 fo sbuipaadoid, ‘Asnins anisuay
-24dw 02 y :3UJOMISU PauUlJIP-21eMUOS,, ‘e 18 ‘0331Q ‘Zanasy

SDN Security Threats

Threat
vectors

Vector 1

Specific
to SDN?

Consequences in software-defined net-
works

Open door for DDoS attacks.

Vector 2

Potential attack inflation.

Vector 3

Exploiting logically centralized controllers.

Vector 4

Compromised controller may compromise the
entire network.

Vector 5 yes Development and deployment of malicious
applications on controllers.

Vector 6 no Potential attack inflation.

Vector 7 no Negative impact on fast recovery and fault

diagnosis.

WORKS

©

(a) Compromised host

Prasad, A. S, Koll, D., and Fu, X. "On the Security of Software-Defined Networks." EWSDN 2015.

Attack Scenario

* OpenFlow property: all unknown packets are forwarded to controller

* Various attacks on network resources possible:
* Exhaust control plane bandwidth
* Exhaust processing capability of controller
* Exhaust memory at switches

WoR ks 11

Avant-Guard [1]

* Security extension to the OpenFlow
data plane

Control Plane
* Connection migration
* Differentiate attacker con-
nections from benign ones

Control Plane Interface

Connection Actuating Flow
Migration Trigger Table Packet

* Actuating trigger Lookup Processing

Avant-Guard

Flow Table (TCAM and SRAM)

Data Plane

[1] Shin, Seungwon, et al. "Avant-guard: Scalable and vigilant switch flow management in software-defined networks." Proceedings of
the 2013 ACM SIGSAC CCS.

NET
WORKS

12

Connection Migration - Idea

* Inspired by TCP SYN Cookie

* Concept

* TCP connection will start from a SYN packet, and an initiator will wait for TCP
SYN/ACK packet

» Often exploited by attackers to launch DoS attack

* How about treating this TCP-handshake at network devices
instead of target hosts

SYN SYN
s 3
SYN/ACK <o u SYN/ACK@
s ACK

ACK

W= L1
W

WoR ks 13

Connection Migration - Idea

* Basic principle:
e Data plane proxies connection establishment
* Only forwards successful flow requests to control plane

ﬁ ‘
=
SYN/ACK O
AEK

WORKS

14

Connection Migration — Access
Table

* List of visiting clients
* Format

* Client IP address: # of TCP connection trials
 # of TCP connection trials include wrong trials
e Simple data structure : 6 bytes (4 bytes for IP and 2 bytes for
counter)

* Overhead
* 1,000,000 client IP addresses = less than 6 MB of memory

* A controller application can read this table

IP Address Counter

WORKS

15

Connection Migration — State Diagram

* 4 states

 Classification

* Distinguish useful TCP connections
via SYN Cookies

* RepOrt Established
* Report to a controller TCP session
P .
M |grat|on TCP session Classification Migration
* Migrate a TCP connection stage stage
if it is a useful (or valid) connection
* Relay

Failed
TCP sessions

* Relay all TCP packets between a
connection source and a destination

Then, Ignore

comput
NET

WoR ks 16

Connection Migration — Flow Chart

Is this Packet in
Flow Table?

Receive TCP
SYN/RST/FIN

YESH Forward packet

NO
h 4

Increase the
counter of Access
Table

Is this Packet

YE
SYN? S-"

Return TCP RST }‘_
N
packet

Generate SEQ
(SYN Cookie)

SYN/ACK packet

Return TCP }<

Flow chart
- The case of receiving TCP
SYN/RST/FIN packet

WORKS

ACK

Receive TCP

Is this Packet in

a Flow Table? YES¥ Forward packet

NO

Check SYN

NO Cookie, YES
l Match? l
Increase the Decrease the
counter of Access counter of Access
Table Table
Return TCP RST Reporttoa
packet Controller

Flow chart

- The case of receiving TCP

ACK packet

Control Plane

5(4) (5 Report stage 5(9) 10 ;Report stage

Classification stage ©_| v/ S & Migration stage
(1) TCP SYN >- (6) TCP SYN
(2) TCP SYN/ACK o (7) TCP SYN/ACK :
(3) TCP ACK " (8) TCP ACK
......... Relay stage v Relay stage
(11) TCP ACK : ‘ (12) TCP ACK
TCP Data : : TCP Data
............................ N Data Plane e ammssssEEEEsEEEEEEsEEEEEEEEs

* Concept
* Delay Connection Migration until the data plane receives (a) data

packet(s)
e Why?

* Good for reducing the effects of some advanced attacks
* E.g., fake TCP connection setup (e.g., HTTP)

Control Plane

:(ST(G)l Report stage (@0)11 11 Report stage
~Flassification staga.. ... X W ...Migtation stage

(1).TCP_SYN)E (7). TCP_SYN ’.

‘ (2) TCP SYN[ACK .‘ (8) TCP SYN[ACK

A E (4) TCP ACK E ---------------------------
TCP Data i RA-c.A--> D.R€lay . Relay stage...
......................... 2 (12) TCP ACK

: TCP Data >=
Data Plane e uunsnnsnnen s n R n e 3

Actuating Trigger - Idea

* Two functions
* Report the following items to the control plane

asynchronously
* Network status
* Payload information

* Activate flow rules based on some predefined conditions
* Security application can use this feature to turn on security
policies without delay

WORKS

20

Actuating Trigger — Operations

*4 main Operations Control Plane (1) Define condition
* In the control plane A
e Define a condition (2) Register condition
* Register the condition (4-1) Rejort status
* In the data plane \/
* Check the condition
* When the condition is (3) Check condlt n
satisfied, match (4-2) Activate a row rule

* Report a network
status or payload
 Activate a flow rule

Data Plane

WoR s 21

Actuating Trigger - Example

e Example of reporting payload

1) defined a condition : want to see payloads of packet from
10.0.0.1

e 2) register this condition to the data plane
* 3) packet is delivered from 10.0.0.1
* 4) payload is delivered to the control plane

Control Plane
lw T

(2)

o —

Data Plane

Evaluation — Use Case

e Network saturation attack case

* A normal client sends HTTP requests to a web server | Nearly
* An attacker tries a SYN flooding attack to a web server | g |oss
I ‘ -OpeanIow i
Normal POX ” 5 ? ? ? 3 3 Avant-Guard
Controller e]éwf e
Web A TR R R R A

Server
Attacker

Modified

Normal POX Controller

O—------I-IF-I-I‘I-qI-I-I-I-I-EI-I-I-I-*‘I-I-I-.-EI-I-I-I-‘I-I-IIE-I‘I--I-I-é---------‘—
Attacker (Avant-Guard) A S S S R S

0 10 20 300 400 50 600 700 800 900
Attack rate (PPS)

23

Evaluation — Use Case

* Detecting SYN flooding/scanning

* Approach
* SYN flooding packets are automatically rejected
* Network scanning attackers will be confused by response packets
* They may think that all network hosts are alive and all network ports
are open (a kind of White hole)

SYN (1)
g SYN/ACK(2) @
SYN Flooding
@ No packet|3

SYN (1)
\ﬂ SYN/ACK(2)
) delivery

Netwo I"k Scanhner Attacker receives SYN/ACK packets even though
there are no hosts
- White hole

No packet
delivery

O

WORKS

24

Evaluation — Use Case

* Intelligent Honeynet

e Approach
* When we try to do connection migration,
* If we can not find a real target host, we may consider this
connection as suspicious

* Then, a security application can redirect this connection to our
honeynet automatically

* Finally, this attacker will perform malicious operations inside a

honenet
SYN (1) SYN (4)
\ﬂ SYN/ACK(2) No host
- ACK (3) s ~9

(5)

attacker /(5)

(7)Rs
« ~ honeynet

WORKS

25

* Connection migration

connection overhead
migration

1608.6 us 1618.74 us 0,626 %

* Actuating trigger
e Gm

Traffic-rate based 0.322 us
condition check

Payload based condition =0
check
Rule activation 1.697 us

Critique

* Needs to extend OpenFlow protocol!

* Connection migration
e E.g., OFPFC_MIGRATE, ...
* Actuating trigger
e E.g., OFPFC_REG_PAYLOAD, ...

* Also brings intelligence to data plane — may or may
not be a good idea

WORKS

27

Another Vulnerability: OF Topology Management

* Topology management includes three parts: switch discovery,
host discovery and internal links (switch-to-switch link)
discovery.

* Within the OpenFlow controller:

* Host Tracking Service (HTS) maintains a host profile that includes
MAC address, IP address, location information and VLAN ID. Host
profile is maintained to track the location of a host and is updated
dynamically.

* Link Discovery Service (LDS) uses Open Flow Discovery Protocol
(OFDP) to detect internal links between switches.trolled by Topology
Management Services.

WoR ks 29

Recap - Link Discovery Service

* Open Flow Discovery Protocol
(OFDP), which refers to LLDP (Link
Layer Discovery Protocol) packets,
to detect internal links between

switches.
Step 1: Packet: Controller Step 3:
Out with LLDP In Wlﬂl LLDP
g S‘I:ep 2: LI.DP
Switch X Ewltl:h Y
NET

WORKS

30

* If fundamental network topology information is poisoned
* all the dependent network services are affected

* Host location hijacking attack and link fabrication attacks are
possible

[1] Hong, Sungmin, et al. "Poisoning Network Visibility in Software-Defined Networks: New Attacks
and Countermeasures." NDSS. 2015.

Hong, Sungmin, et al. "Poisoning Network Visibility in
Software-Defined Networks: New Attacks and Counter-

measures." NDSS 2015.

sz
Om
b3
= =
wn

Controller Host Tracking Systems

App

Core

Switch

Packet-In
LLDP

=t

—

11

Applications
(Routing, LB, etc.)

-
Topology-Aware
Service (E.g. 5TP)

Host-Aware
Service (E.g. Web)

[Update Routing]

|

Actions

Update status]

Update status
Actions

L. l

o

e

o

&

Core Services (e.g., policy, etc.)

Link Discovery Service

Update Status

Link Info

-

Host Tracking Service

Update Status

Host Profile \

ﬁu/j;\-

32

Controller Host Tracking Systems

Controller Platform Link Discovery Service TLVs Host Tracking Service Host Profile
Ryu swilches.py DPID, Port ID, TTL host_tracker.py MAC, IP, Location
Maestro Discovery App.java DPID, Port 1D, TTL LocationManagementApp.java MAC, Location
NOX discovery.py DPID, Port ID, TTL hosttracker.cc MAC, Location
POX discovery.py DPID, Port ID. TTL. System Description host_tracker.py MAC, IP. Location
Floodlight LinkDiscoveryManager java DPID, Port ID, TTL, System Description DeviceManagerlmpl java MAC, VIAN ID. IP, Location
OpenDayLight DiscoveryService.java DPID, Port ID. TTL. System Description DeviceManagerlmpl.java MAC, VIAN ID. 1P, Location
OpenlRIS OFMLinkDiscovery. java DPID, Port ID, TTL, System Description OFMDeviceManager java MAC, VIAN 1D 1P, Location
Beacon TopologyImpl_java DPID, Port 1D, TTL. Full Version of DPFID DeviceManagerlmpl.java MAC, VLAN 1D, IP, Location

* (1) MAC address
* (2) IP address

* (3) Location information (i.e., the DPID and the port number
of the attached switch as well as the last seen timestamp).

WoR ks 33

Host Location Hijacking Attack

* Host Tracking Service
maintains a host profile for
each end host to track
network mobility.

* Adversary can tamper host
location information which
in turns affects routing
decisions and hijack the
traffic towards the host.

* Caused by lack of security
considerations in current
controllers

WORKS

g

v

e -7

10.0.0.100

34

Web Impersonation Attack

o Mozilla Firefox ¢ Mozilla Firefox
http://10.0.0.100/ & http://10.0.0.100/
€ 10.0.0.100 ~C 8- Q¢ e { | & 10.00.100 «¢ B Q 4
It works! Attack Succeed!
This is the default web page for this server. This is the malicious web server.
The web server software is running but no content has been added, yet. The web server software is to phish users.

(a) Connected to Genuine Server (b) Hijacked by Malicious Server

(uhylruém-rl

WoR ks 35

LLDP — why is it dangerous?

* OpenFlow controllers use a discovery service built on LLDP
for topology discovery

* In theory, discovery service should:
* Ensure integrity and origin of a LLDP packet (integrity invariant)

e Ensure that only switches are on the path of LLDP packets (and no
hosts; path invariant)

e Unfortunately, current controllers don’t care much...
* E.g., no feature in any controller to check integrity of LLDP packets

* Also: most controllers are open source — danger of
circumvention of possible precautions

WORKS

36

Attacker Options

* Create falsified LLDP packets (violation of integrity/origin
invariant) or relay LLDP packets between switches (violation
of path invariant)

* Both are possible since OpenFlow allows LLDP packets to
originate from switch ports that are assigned to a host

WORKS

37

Link Fabrication Attack

* Fake LLDP Injection plus monitoring the traffic from
OpenFlow switches: the attacker can

* Learn LLDP packet structure by observing benign LLDP packets,
* modify the specific contents of a captured LLDP packet,

» generate fake LLDP packets (e.g., with falsified ports or DPIDs)
to announce bogus internal links between two switches.

DI_dst DIl_sre Eth_type Chassis ID TLV Port ID TLV TTL TLV

01:80:C2:00:00:0E | Outgoing Port MAC 0XBRCC DPID of Switch Port Number of Switch | Time to Live

TABLE II: The Format of LLDP Packets

* LLDP relay:

* when receiving an LLDP packet from one target switch,

* the attacker repeats it to another target switch without any
modification constructing a fake topology view

WoR ks 38

Fake Topology Attack

Launch Opendaylight

(a) Attack Topology

: :mmw.mww-wfwfullmldm

3:508:40,906558 1P 10,0.0.1 > 10,0.0.3:
088:40,311964 TP 10,0,0.3 > 10,0,0.1:
8:58:41,731296 IP 10,0,0.1 > 10.0,0,3:
0780:41.,731520 1P 10,0,0.3 > 10.0,0.1:
8:58:42,730103 IP 10.0,0.1 > 10.0,0.3:
380:42,730185 TP 10.0,0.3 > 10,0.0.1:

8:58:42,830172
3:58:43.721238 1P 10.0,0.1 > 10.0.0,3:

64
8:58:43.731347 1P 10.0,0,3 > 10,0.0,1:

alum

(Ethernet), capture
8:58:40,733076 ARP, Request who-has 10,0,0.3 tell 10,0.0,1, length 28
éﬂ& 140,891255 ARP, Reply 10,0,0,3 is-at b2:af:fbie9:a0:69 Coul Unknown), lengt)

ICHP echo request, id 2757, seq 1, lergt)
ICHP echo reply, id 2757, seq 1, length
ICHP echo request, id 2757, seq 2, lengt|
ICHP echo reply. id 2757, seq 2, length
ICHP echo request, id 2757, seq 3, lengt|
ICHP echo reply, id 2757, seq 3, length

ICHP echo request, id 2757, seq 4, lengt|
ICHP echo reply, id 2757, seq 4, length

(b) Attack Result

Dynamic Defense Strategies against Host Location
Hijack

* Authenticate Host Entity: public-key infrastructure

* Overhead for keeping public keys in the OpenFlow controller side and
computation overhead for handling each Packet-In message.

* Verify the Legitimacy of Host Migration

* verify the legitimacy of the host migration by checking the
precondition (Port-Down) and post condition (Host unreachable in
old location)

* Performance overhead but lighter and more feasible

WORKS

41

Dynamic Defense Strategies against Link Fabrication

* Authentication for LLDP packets

» Adds extra controller-signed authenticator ((HMAC) code) TLVs in the
LLDP packet and check the signature when receiving the LLDP packets.

* Fails to defend against the relay/tunneling link fabrication attack

* Verification for Switch Port Property
* Check if any host resides inside the LLDP propagation

* If OpenFlow controllers detect host-generated traffic (e.g., DNS) from
a specific switch port, Device Type of that port is set as HOST,
otherwise switch ports are set as SWITCH.

WORkg 42

TopoGuard - Automatic and real-time detection

* Port Manager tracks dynamics of switch ports (ANY, SWITCH and HOST)
* Port Property maintains host list to verify the trustworthiness of a host migration.

* The Host Prober tests the liveness of the host in a specific location by issuing a host
probing packet.

» Topology Update Checker verifies the legitimacy of a host migration, the
integrity/origin of an LLDP packet and switch port property

TopoGuard
OpenFlow
Messages Port Host
Manager Prober
A ’
% A 4
Port Topology
Property > Update
\ DB Checker j
A

Fig. 8: The Architecture of TopoGuard

WORkg a3

Port Property Management

First-Hop

LLDP Packet ost Packet

First-Hop
_ Host Packet LLDP Packet

HOST ANY T switcH

Port_Down Signalr) Port_Down Signal

Fig. 9: The Transition Graph of Device Type

* Properties for each switch port in an OpenFlow controller.
» Shows to what kind of device (host, switch, any) a switch port connects

e Upon receiving a mismatching packet (e.g., LLDP from host), raise
alert

* Host movement only autorised if matching Port_Down signals are
received

WORKS

44

* TopoGuard with Floodlight implementation

lew 1/0 server worker #2-1] Link added: Link [src=00:00:00:00:00:00:00:01 outPort=3, dst=00:00:00:00:80:00:
irver-main] Starting DebugServer on :6655

‘$PortManager:New I/0 server worker #2-1) Device:7a:f1:0d:d6:31:fd is added on:

‘$PortManager:New I/p server worker #2-1] sw:1,port:1

‘$PortManager:New I/0 server worker #2-1) Device:96:2a:7e:28:2f:54 is added on:

‘$PortManager:New I/0 server worker #2-1] sw:1,port:2

‘$PortManager:New I/0 server worker #2-2] Device:ca:81:f9:df:08f:bl is added on:

‘$PortManager:New I/0 server worker #2-2] sw:2,port:2

‘$PortManager:New 1/0 server worker #2-1] Device:2a:45:16:50:b9:cf is added on:

‘$PortManager:New 1/0 server worker #2-1] sw:3 port:

‘$PortManager:New I/0 server worker #2-2]
‘SPortManager:New I/0 server worker #2-1]

Fig. 10: The Detection of Host Location Hijacking Attack

TopoGuard Implementation - Effectiveness

lew

|er:

lew

er:

lew
lew

er:

lew

rver-main] Starting DebugServer on :6655

I/0
New
I/0
New
I/0
I/0
New
I/0

server worker #2-2] Link added: Link [src=00:00:00:00:00:00:00:03 outPort=1, dst=00:00:00:00:80:00:
I/0 server worker #2-1] Inter-switch link detected: Link [src=00:00:00:00:00:86:00:02 outPort=3, ds
server worker #2-1] Link added: Link [src=00:00:00:00:00:00:00:02 outPort=3, dst=00:00:00:00:00:00:
I/0 server worker #2-1] Inter-switch link detected: Link [src=00:00:00:00:00:00:00:01 outPort=3, ds
server worker #2-1)] Link added: Link [src=00:00:00:00:00:00:00:01 outPort=3, dst=00:00:00:00:00:00:
server worker #2-1] Link added: Link [src=00:00:00:00:00:80:00:03 outPort=2, dst=00:00:00:00:60:00:
I/0 server worker #2-1] Inter-switch link updated: Link [src=00:00:00:00:00:00:00:03 outPort=2, dst
server worker #2-1] Link updated: Link [src=00:00:00:00:00:00:00:03 outPort=2, dst=00:00:00:00:00:0

‘$PortManager:New 1/0 server worker #2-2] jviolation: Receive LLDP packets from HOST port: SW 1 port 2
‘SPortManager:New 1/0 server worker #2-2]) s
‘SPortManager:New 1I/0 server worker #2-2]) Vlolatlon Receive LLDP packets from HOST port: SW 1 port 2

Fig. 11: The Detection of Link Fabrication Attack

When the compromised hosts start relaying LLDP packets,
TopoGuard detects the violation of Device Type of particular ports

comput
NET

VV()Rl(S

46

TopoGuard Implementation - Performance

Link Discovery Snippet

Impact of TopoGuard (Percentage)

Controller Overall Cost

LLDP Constructuon(birst ume with computing HMAC) 0.431ms(80.4%) 0.536ms
LLDP Construction 0.005ms(2.92%) 0.171ms
LLDP Venhcatuon 0.005ms(1.64%) 0.304ms

TABLE V: HMAC Overhead on the Floodlight controller

* The performance penalty imposed by TopoGuard mainly comes from the
Link Discovery Module and the Packet-In message processing.

* Port Manager incurs a slight delay over the normal LLDP and host-

generated packets processing.

WORKS

* Security of the network and underlying networking
components are essential.
* What if these are compromised?

(b) Compromised switch

Controller

[1] Dhawan, Mohan, et al. "SPHINX: Detecting Security Attacks in Software-Defined Networks.” NDSS 2015.

Time T1

Time T2

Other OpenFlow packets

Policies

e e e

o Intercept OpenFlow a Build Flow
packets Graph

© validate network
behavior

I
I
I
FI d It : Relay to the
OpenFlow | | e Metadata : , controller /
packets | Stats_reply feature set I : Verifier Alert switches
—N : N N\ in [
Packet_in ; N ——— ‘ | Admin “
Features_reply . Topology J | (o .\ \l J
L : Feedback ‘ !
Parser Assimilator ! Data Store < |
[/ |
! ;
! L]
!]
']
' 1

SPHINX

» Specified in constraint language

Feature

Description

Subject
Object

Operation
Trigger

(SRCID, DSTID), where ¥ SRCID and DSTID € { CONTROLLER |
WAYPOINTID | HOSTID | =}

{COUNTERS | THROUGHPUT | OUT-PORTS | PACKETS | BYTES |
RATE | MATCH | WAYPOINT(S) | HOST(S) | LINK(S) | PORT(S) | etc.}
IN | UNIQUE | BOOL (TRUE, FALSE) | COMPARE (<, >, =, #) | etc.
PACKET_IN | FLOW_MOD | PERIODIC

» Example policy to check if all flows from host H3
pass through specified waypoints S2 and S3

<Policy PolicyId="Waypoints">

<Subjects><Subject value="H3, *" /></Subjects>
<Objects>

<Object><Waypoint value="S2" /></Object>
<Object><Waypoint value="S3" /></Object>

</Objects>
<Operation value="IN" />
<Trigger value="Periodic" />

</Policy>

comput
NET
WORKS

55

Compromised Controllers?
Controllers are pieces of software!

“By compromising an SDN controller—a critical
component that tells switches how data packets
should be forwarded—an attacker would have control
over the entire network”

- David Jorm, OpenDayLight Security Team Lead

WORKS

57

Compromised Controllers?

* Route flows around security devices
* Controller subverts new flows

* Send traffic to compromised nodes
* “Man in the Middle” attacks

* Modify content

*Insert malware

* Monitor traffic

* Subvert DNS responses

WORKS

58

Compromised Controllers?

“In late 2014 an XXE flaw was found in OpenDaylight’s netconf
interface. [...] OpenDaylight’s netconf implementation did not
disable external entities when processing user-supplied XML
documents, thereby exposing an XXE flaw. [...] A remote attacker,
if able to interact with one of OpenDaylight’s netconf interfaces,
could use this flaw to exfiltrate files on the OpenDaylight
controller. This could include configuration details and plaintext
credentials.”

- http://onosproject.org/2015/04/03/sdn-and-security-david-
jorm/

WORKS

59

Steps towards more secure controllers

 Security-mode ONQOS, S(ecurity)E(nhanced)-Floodlight

* both more or less deal with northbound interface security (app policies)

* Current best practice: make controller machine secure, monitor
it, etc.

WoR ks 60

