
Advanced Practical Course:
Data Science

Dr. David Koll



Why Data Science?

“The demand for data scientists is increasing so quickly, that McKinsey 
predicts that by 2018, there will be a 50 percent gap in the supply of data 
scientists versus demand.” – The Alexa Blog (http://blog.alexa.com/know-data-science-important/)



Why Data Science?

– Glassdoor Career Website (http://www.glassdoor.com/)



Why Practical Data Science?

We are looking for a data scientist – a software
developer with a focus on data analytics, 
machine learning and data visualization.

Your tasks will cover various aspects of 
industrial data analyticssuch as
 Data Curation, evaluation and analysis
 Development of data analytics models, e.g., 

predictive models for industrial assets, 
based on cutting-edge machine learning
and artificial intelligence techniques

 User interface development to visualize
data and information in industrial settings

 Publishing of results and creation of 
intellectual property



Why Practical Data Science?

 Data analytics: Python (mandatory), R is a 
plus

 Web server and client technologies: 
Angular2, Vue.js, Node.js

 Visualization with Less, Grunt/Gulp or D3.js 
is a plus

 Software development: C# is a plus
 Solid data engineering and platform skills
 Experience on handling and querying data

in files, tables, databases
 Strong experience in visualizing data and

information
 Machine learning skills
 Knowledge of the inner logic of machine

learning algorithms
 Affection for statistics
 Experience with machine learning

frameworks and toolboxes



Course Prerequisites

 Background in Machine Learning is required
 “Data Science and Big Data Analytics” taught by the SWE group

 “Machine-Learning” Coursera course by Stanford

 …

 Background in Programming is required
 Use R, Python, JAVA, MATLAB, …

 Anything that offers ML libraries

 Course materials (e.g., exemplary solutions) will be in Python

 Recommendation: Python or R

Make sure to bring enough time!



Course Structure

 This is a practical course!

 Strong focus on practice over theory!

 Learn basic theory in prerequisite courses!

 There will be only four lectures
 Lecture 1: The Data Science Pipeline – or: How to approach a practical task?

 Lecture 2: The Python Data Science Stack

 Lecture 3: Advanced Algorithms for Data Science – or: How to compete?

 Lecture 4: Evaluation and fine tuning of predictive models

Today!



Course Structure

 Strong focus on practice over theory!

 There will be three practical tasks
 Task 1: Warming Up

 Task 2: Exploring and analyzing data

 Task 3: Competing on Kaggle (classification or regression problem)

 Disclaimer: this semester no core computer networks problem involved
 If you are interested, send an email for tasks and datasets from previous semesters



Course Structure

 Please note: course parameters depend on the number of participants. 
 Allowed team sizes, presentation lengths and styles, etc., may change throughout the 

course, depending on how many students approach each task!

 For each practical task, you will:
 Work on a real-world dataset
 Perform exploratory data analysis
 Build a predictive model
 Present your findings in class

 if number of participants allows it
 Otherwise: submit report document (notebooks or PDFs)

 Third task: 
 Depending on number of participants either public or face-to-face presentation

 Summarize your most important findings and methods in a final report



Course HW/SW Requirements

 Ideal: workstation with i5/i7/Ryzen quadcore, 16+ GB RAM, CUDA GPU

 Good: laptop or workstation with dualcore, 8+ GB RAM

 Hardcore mode: single core laptop, <=4GB RAM

Most important hardware is RAM

 Plus: ~10GB diskspace

 If your hardware only allows hardcore mode, but you would rather not 
play that way: please send me an email before starting task 2!



Course Structure

 For each task, there will be intermediate meetings
 Opportunity to discuss and share:

 Problems you have with the data

 Initial results

 Ideas for approaching the problem

 …

 Style of work: preferably in teams of two
 Working alone possible if number of students allows it

 Teams of three only when student number is large enough



Course Schedule
2017 Schedule

19.10. Lecture 1 (The Data Science Pipeline)

Release of first task

26.10. Lecture 2 (The Python Data Science stack)

02.11. Task 1: Intermediate meeting

09.11. No lecture

16.11. Task 1: Presentations
Release of second task

23.11. Lecture 3 (Advanced algorithms for Data Science)

30.11. Lecture 4 (Evaluation and fine tuning of models)

07.12. Task 2: Intermediate meeting

14.12. No lecture

21.12. Task 2: Presentations
Release of third task

2018 Schedule

04.01. No lecture

11.01. Task 3: Intermediate meeting I

18.01. No lecture

25.01. Task 3: Intermediate meeting II (tentative)

01.02. No lecture

08.02.
15.02. 
22.02.

Task 3: Presentations

30.03. Submission of final report



Course Grading

 Presentations (or reports): 60%
 Tasks are contributing to the final grade based on their difficulty

 Task 1: 10%
 Task 2: 20%
 Task 3: 30%

 Intermediate meetings: 20%
 Bring 2-3 slides with your core findings and/or problems
 Participate in discussion
 Note: This category might be dropped if there are too many students

 Final Report: 20%
 Summarize the key insights and approaches for each task
 Incorporate feedback of presentation sessions
 Rough guideline: 8-10 pages double column format
 Template will be provided



What this course will not cover

 Database foundations (SQL, NoSQL, …) & data engineering techniques
(Hadoop, Spark, …)

 In-depth statistics

 In-depth algorithmic theory on:
 Pure regression algorithms

 Neural networks and deep learning
 (D/C)NNs are typically used for computer vision problems, which we do not tackle here

 You are free to use these techniques in the practical part



The Data Science Pipeline 
or: How to approach a practical problem

Dr. David Koll



Case study: Bike sharing in Washington D.C.



Case study: Bike sharing in Washington D.C.



Why is Data Science Important?

System Optimization:
 Replenishment optimization (how many bikes

available at what time at which station?)
 Bike tracking for route optimization (suggest

optimal/alternative routes/stationsto
customers)

 Waiting time estimation (in case of empty rack)
 Station placement (based on user movement

patterns)
 Individual user recommendations based on user

behavior (e.g., advertisements)
 Or simply: amount of customers at a given hour



An exemplary Data Science task

Management: „We need a prediction of usage numbers for our system for
every hour of the week“

?



The (Ideal) Data Science Pipeline

Objective
(predict # of rides)

Collect Data

 Identify data sources
 Set up data collectors

(sensors, crawlers, …)
 Connect to sources, 

collectors
 Collection process

Wrangle Data

 Clean data
 Handle missing data

What could possibly go
wrong here?



The (Ideal) Data Science Pipeline

Analyze Data
(„understand“ the data)

Modeling

 Turn observations into
actions

 Create features
 Build algorithm
 Tune algorithm
 Final product: 

predictive model

Visualize/Report 
Results

 Report back to
management

 Optional: Re-tune 
model

 Explore statistical
properties of data

 Distributions
 Patterns
 Anomalies
 Correlations
 Visualization!



The (Ideal) Data Science Pipeline

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results



Side Note: A Frequent Real-World Pipeline

Collect some data „What can we do 
with the data?“

Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results



In this course…

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Case Study: Dataset

Objective
(predict # of rides)

Collect Data

Given in task description Given by datasets

Data can be found at: https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
- Split dataset: hourly and daily data of two years (2012/2013) in the bike sharing system operation
- 16 attributes / features
- 17389 instances / rows / feature vectors



Case Study: Use of IPythonNotebook

 Can combine code, visualization and documentation!



Case Study: Use of IPythonNotebook



In this course…

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Wrangling Data

 Cleaning data to make it useable for analysis and model building

 Required, because:
 Raw data is rarely complete

 Raw data is rarely consistent

 Why?

 Different techniques to handle both issues



Missing Data

 E.g., caused by measurement gaps (sensor battery dies)

Often easy to detect (e.g., look for NaN values)

 A multitude of approaches available

Use of strategy depends on nature of data, computation resources, etc.

A B C

12 80 1

5 NaN 7

4 6 6

9 600 15

Item

1

2

3

4

A B C

12 80 1

- - -

4 6 6

9 600 15

A B C

12 80 1

5 286 7

4 6 6

9 600 15

A B C

12 80 1

5 6 7

4 6 6

9 600 15

Original Data Remove Impute Column Mean kNN-Imputation (k=1)



Inconsistent Data

 E.g., caused by measurement errors (sensor blocked, falsely calibrated)

 Harder to detect (need feature context)

Use imputation to fill in data, pay attention to context!

Use of strategy depends on nature of data, computation resources, etc.

A Temp C

12 80 1

5 4 7

4 6 6

9 600 15

Item

1

2

3

4

A Temp C

12 80 1

5 4 7

4 6 6

- - -

A Temp C

12 80 1

5 4 7

4 6 6

9 30 15

A Temp C

12 80 1

5 4 7

4 6 6

9 4 15

Original Data Remove Impute Column Mean kNN-Imputation (k=1)



Inconsistent Data – Outlier Handling

Outlier Handling

 Detecting outliers?

Univariate: Use boxplots!

Source: whatissixsigma.net



Inconsistent Data – Outlier Handling

Multivariate: e.g., use linear regression with data point error
 Note: there are more advanced strategies (e.g., Minkowski error)

 Feel free to inform yourself on these – strategy selection is important here, too:

 Outliers may actually be valuable data points!

Source: kdnuggets.com



Case Study: Cleaning Data



Case Study: Cleaning Data

Nothing (too obvious) to do here 



Data Science Pipeline

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Analyzing Data: Exploratory Data Analysis (EDA)

 Investigating data with the goal of producing insights

 Gained knowledge should later be transformed into model features

More colloquially: „trying to understand the data“
 Understand the features given in the data

 Find patterns in the data

 Distribution of features

 Correlation between features



EDA: A Starting Point



Case Study EDA: Correlations



Correlation Does Not Imply Causation!

http://www.tylervigen.com/spurious-correlations



Case Study: Does the season affect bike usage?



Case Study: Does the time of day affect bike usage?



Case Study: Difference between user classes?



EDA: Visualizations –Bad Plots

Note: all visualizationstaken from http://wtfviz.net



EDA: Visualizations – Bad Plots



EDA: Visualizations – Bad Plots



EDA: Visualizations – Bad Plots



EDA: PlottingDo‘s and Don‘ts

 Do ensure your visualization answers a question

 Do aim for simplicity, consistency

 Do carefully select the right type of plot for your statement

 Do provide consistent and clear labels

 Do make your charts readable

 Don‘t overload graphs

 Don‘t use too many colors

 Don‘t distort data (setting bad axis limits, scales, etc.)

 Don‘t change your style in the course of a project

 Don‘t make readers guess (see clear labels)



Case Study: Next Step

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Predictive Modeling

Major steps: feature engineering and model building

 Feature engineering: turn insights from EDA into features that help with
prediction

Coming up with features is difficult, time-consuming, requires expert knowledge. 
"Applied machine learning" is basically feature engineering.

— Andrew Ng (Co-Founder of Coursera, Chief Scientist at Baidu)

 Critical: domain knowledge



Feature Engineering – Common Practices

 Features are usually engineered as functions of already existing features

 Alternatively: create features from external data sources

 Possible functions: ratios, differences, categorizations, …

 Possible external sources: event databases, weather databases, …

 A creative process!

 Sidenote: neural networks can learn features themselves
 In many cases better than those created by engineering – drawbacks?



Feature Engineering – Examples

 Consider Twitter:
 Goal: predict which users are the most influential users in the network
 Dataset features: number of followers, number of followees
 Number of followers expressive?

 Yes, to a certain extent: often following exchanges to boost follower numbers

 Better feature: ratio of followers to followees
 Intuition behind: really influential users have much more followers than followees

 Consider Intrusion Detection Systems (IDS):
 Goal: given on packet level data, predict whether packet is malicious
 Dataset features: packet length, header fields, packet type
 Good features: classifications based on different combinations of features

 Intuition behind: attacking packets typically follow a certain signature



Case Study: Feature Engineering



Building A Model

1. Have a good idea for how to model and evaluate the task.

2. Pick the right algorithm for the task.

3. Split the data into train and test (and possibly validation) data

4. Fit model on train data

5. Test the model on the test data

6. If result is not good enough: return to EDA / feature engineering



Case Study: Building A Model

 Have a good idea to model the task
 Usually result of EDA

 In this case: build two models, one for registered, one for casual users



Case Study: Building A Model

 Have a good idea to evaluate the model
 A lot of metrics available: 

 Mean Absolute Error (MAE)

 Mean Squared Error (MSE)

 Area under ROC (AUC)

 F1-Score

 … (see later lectures)

 In this case: our predicted numbers should be as close to reality as possible
 Need: low average error

 Decision: use MAE (why: ideas? If not, see later lectures)



Case Study: Building A Model

 Pick the right algorithm for the task.
 Regression vs classification vs image detection vs…

„We need a prediction of usage numbers for our system for every hour of the 
week“

 Clearly a regression problem! 

 Would applying a classification model work?

 Possible candidates?
 Linear regression, Random Forest regression, kNN regression, …



Case Study: Building A Model

 Pick the right algorithm for the task.



Case Study: Building A Model

 Split your data into train and test (and possibly validation) data



Case Study: Building A Model

 Fit the model on train data
 First step: determine what needs to be predicted (target)

 Then: fit model so that cost function is minimized wrt target



Case Study: Building A Model

 Test the model on test data wrt evaluation metric

MAE = 70.03 – our hourly prediction is 70 users off by average.
 Is this good enough? 

 Average user count:
 ~200 -> more than 30% error

 Clearly not good enough!



Case Study: Building A Model

 Let‘s try a different algorithm

MAE = 17.84
 A huge improvement simply by taking a ‚better‘ algorithm.



Case Study: Building A Model

 Test the model on test data wrt evaluation metric
 Used standard parameters for RandomForest regressor

 Result can be further improved by tuning parameters and coming up with
additional features.

 Explanation of algorithm & parameter tuning: see later lectures



Case Study: Building A Model

 Repeat for Casual users:

Model is not better:
 Counts are also lower!



Case Study: Building A Model

 Putting things together:
 So far, two different counts from two single models.

 Need to blend these counts into each other (you might even call it ensembling)

 Here: simple sum

 For every hour, our model can on average predict the accurate ride
count with an error of ~21 rides!
 Good enough?



Case Study: Building A Model

 Evaluating the model (aka: Are our features useful?)



Summary

 In this course, we focus on two key aspects of Data Science:
 Exploratory Data Analysis (EDA)

 Predictive Modeling

 …and how to combine them such that the model benefits from EDA

We have…
 …seen a case study of how to explore a simple dataset

 …transformed results from EDA into features

 …built a simple, yet expressive model and evaluated an error metric



Summary

Only used four tools/libraries:
 IPython Notebook / Jupyter Notebook

 Pandas for data manipulation and exploration

 Seaborn for data visualization

 Scikit-learn for predictive modeling and evaluation

Next week: An overview of the Python Data Science Stack

 Further lectures:
 Algorithms: How do RandomForests (and others) work?

 Model evaluation: How to choose metrics, how to prevent overfitting, etc.



Task 1

 Basically: Recap what you have learned today
 Next week: introduction of Python libraries to do the job

 Instead of bike sharing: predict wine quality

We use Kaggle InClass for submissions. 
 You need to register at Kaggle.com (please use university email address)

 Please set your screenname (not username) to something that identifies you
 E.g., first name + last name initial, matriculation number, …

 Or let me know by email which name you are submitting under

 Task description, data, etc at:

https://www.kaggle.com/c/m-inf-1800-ws-17-18-task-1/

https://www.kaggle.com/c/m-inf-1800-ws-17-18-task-1/


Task 1

 Start date: now!

 Deadline: Wed, Nov 15th, 23:59 (4 weeks)
 Kaggle will not accept further submissions after that deadline, and neither will I

 For this task: no teams

 You will have 5 submissions to the system every day

 You can select 2 submissions for final grading in the end

 Presentations or Submissions (will be decided after 2 weeks): Nov 16th


