
Advanced Practical Course:
Data Science

Dr. David Koll



Why Data Science?

“The demand for data scientists is increasing so quickly, that McKinsey 
predicts that by 2018, there will be a 50 percent gap in the supply of data 
scientists versus demand.” – The Alexa Blog (http://blog.alexa.com/know-data-science-important/)



Why Data Science?

– Glassdoor Career Website (http://www.glassdoor.com/)



Why Practical Data Science?

We are looking for a data scientist – a software
developer with a focus on data analytics, 
machine learning and data visualization.

Your tasks will cover various aspects of 
industrial data analyticssuch as
 Data Curation, evaluation and analysis
 Development of data analytics models, e.g., 

predictive models for industrial assets, 
based on cutting-edge machine learning
and artificial intelligence techniques

 User interface development to visualize
data and information in industrial settings

 Publishing of results and creation of 
intellectual property



Why Practical Data Science?

 Data analytics: Python (mandatory), R is a 
plus

 Web server and client technologies: 
Angular2, Vue.js, Node.js

 Visualization with Less, Grunt/Gulp or D3.js 
is a plus

 Software development: C# is a plus
 Solid data engineering and platform skills
 Experience on handling and querying data

in files, tables, databases
 Strong experience in visualizing data and

information
 Machine learning skills
 Knowledge of the inner logic of machine

learning algorithms
 Affection for statistics
 Experience with machine learning

frameworks and toolboxes



Course Prerequisites

 Background in Machine Learning is required
 “Data Science and Big Data Analytics” taught by the SWE group

 “Machine-Learning” Coursera course by Stanford

 …

 Background in Programming is required
 Use R, Python, JAVA, MATLAB, …

 Anything that offers ML libraries

 Course materials (e.g., exemplary solutions) will be in Python

 Recommendation: Python or R

Make sure to bring enough time!



Course Structure

 This is a practical course!

 Strong focus on practice over theory!

 Learn basic theory in prerequisite courses!

 There will be only four lectures
 Lecture 1: The Data Science Pipeline – or: How to approach a practical task?

 Lecture 2: The Python Data Science Stack

 Lecture 3: Advanced Algorithms for Data Science – or: How to compete?

 Lecture 4: Evaluation and fine tuning of predictive models

Today!



Course Structure

 Strong focus on practice over theory!

 There will be three practical tasks
 Task 1: Warming Up

 Task 2: Exploring and analyzing data

 Task 3: Competing on Kaggle (classification or regression problem)

 Disclaimer: this semester no core computer networks problem involved
 If you are interested, send an email for tasks and datasets from previous semesters



Course Structure

 Please note: course parameters depend on the number of participants. 
 Allowed team sizes, presentation lengths and styles, etc., may change throughout the 

course, depending on how many students approach each task!

 For each practical task, you will:
 Work on a real-world dataset
 Perform exploratory data analysis
 Build a predictive model
 Present your findings in class

 if number of participants allows it
 Otherwise: submit report document (notebooks or PDFs)

 Third task: 
 Depending on number of participants either public or face-to-face presentation

 Summarize your most important findings and methods in a final report



Course HW/SW Requirements

 Ideal: workstation with i5/i7/Ryzen quadcore, 16+ GB RAM, CUDA GPU

 Good: laptop or workstation with dualcore, 8+ GB RAM

 Hardcore mode: single core laptop, <=4GB RAM

Most important hardware is RAM

 Plus: ~10GB diskspace

 If your hardware only allows hardcore mode, but you would rather not 
play that way: please send me an email before starting task 2!



Course Structure

 For each task, there will be intermediate meetings
 Opportunity to discuss and share:

 Problems you have with the data

 Initial results

 Ideas for approaching the problem

 …

 Style of work: preferably in teams of two
 Working alone possible if number of students allows it

 Teams of three only when student number is large enough



Course Schedule
2017 Schedule

19.10. Lecture 1 (The Data Science Pipeline)

Release of first task

26.10. Lecture 2 (The Python Data Science stack)

02.11. Task 1: Intermediate meeting

09.11. No lecture

16.11. Task 1: Presentations
Release of second task

23.11. Lecture 3 (Advanced algorithms for Data Science)

30.11. Lecture 4 (Evaluation and fine tuning of models)

07.12. Task 2: Intermediate meeting

14.12. No lecture

21.12. Task 2: Presentations
Release of third task

2018 Schedule

04.01. No lecture

11.01. Task 3: Intermediate meeting I

18.01. No lecture

25.01. Task 3: Intermediate meeting II (tentative)

01.02. No lecture

08.02.
15.02. 
22.02.

Task 3: Presentations

30.03. Submission of final report



Course Grading

 Presentations (or reports): 60%
 Tasks are contributing to the final grade based on their difficulty

 Task 1: 10%
 Task 2: 20%
 Task 3: 30%

 Intermediate meetings: 20%
 Bring 2-3 slides with your core findings and/or problems
 Participate in discussion
 Note: This category might be dropped if there are too many students

 Final Report: 20%
 Summarize the key insights and approaches for each task
 Incorporate feedback of presentation sessions
 Rough guideline: 8-10 pages double column format
 Template will be provided



What this course will not cover

 Database foundations (SQL, NoSQL, …) & data engineering techniques
(Hadoop, Spark, …)

 In-depth statistics

 In-depth algorithmic theory on:
 Pure regression algorithms

 Neural networks and deep learning
 (D/C)NNs are typically used for computer vision problems, which we do not tackle here

 You are free to use these techniques in the practical part



The Data Science Pipeline 
or: How to approach a practical problem

Dr. David Koll



Case study: Bike sharing in Washington D.C.



Case study: Bike sharing in Washington D.C.



Why is Data Science Important?

System Optimization:
 Replenishment optimization (how many bikes

available at what time at which station?)
 Bike tracking for route optimization (suggest

optimal/alternative routes/stationsto
customers)

 Waiting time estimation (in case of empty rack)
 Station placement (based on user movement

patterns)
 Individual user recommendations based on user

behavior (e.g., advertisements)
 Or simply: amount of customers at a given hour



An exemplary Data Science task

Management: „We need a prediction of usage numbers for our system for
every hour of the week“

?



The (Ideal) Data Science Pipeline

Objective
(predict # of rides)

Collect Data

 Identify data sources
 Set up data collectors

(sensors, crawlers, …)
 Connect to sources, 

collectors
 Collection process

Wrangle Data

 Clean data
 Handle missing data

What could possibly go
wrong here?



The (Ideal) Data Science Pipeline

Analyze Data
(„understand“ the data)

Modeling

 Turn observations into
actions

 Create features
 Build algorithm
 Tune algorithm
 Final product: 

predictive model

Visualize/Report 
Results

 Report back to
management

 Optional: Re-tune 
model

 Explore statistical
properties of data

 Distributions
 Patterns
 Anomalies
 Correlations
 Visualization!



The (Ideal) Data Science Pipeline

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results



Side Note: A Frequent Real-World Pipeline

Collect some data „What can we do 
with the data?“

Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results



In this course…

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Case Study: Dataset

Objective
(predict # of rides)

Collect Data

Given in task description Given by datasets

Data can be found at: https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
- Split dataset: hourly and daily data of two years (2012/2013) in the bike sharing system operation
- 16 attributes / features
- 17389 instances / rows / feature vectors



Case Study: Use of IPythonNotebook

 Can combine code, visualization and documentation!



Case Study: Use of IPythonNotebook



In this course…

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Wrangling Data

 Cleaning data to make it useable for analysis and model building

 Required, because:
 Raw data is rarely complete

 Raw data is rarely consistent

 Why?

 Different techniques to handle both issues



Missing Data

 E.g., caused by measurement gaps (sensor battery dies)

Often easy to detect (e.g., look for NaN values)

 A multitude of approaches available

Use of strategy depends on nature of data, computation resources, etc.

A B C

12 80 1

5 NaN 7

4 6 6

9 600 15

Item

1

2

3

4

A B C

12 80 1

- - -

4 6 6

9 600 15

A B C

12 80 1

5 286 7

4 6 6

9 600 15

A B C

12 80 1

5 6 7

4 6 6

9 600 15

Original Data Remove Impute Column Mean kNN-Imputation (k=1)



Inconsistent Data

 E.g., caused by measurement errors (sensor blocked, falsely calibrated)

 Harder to detect (need feature context)

Use imputation to fill in data, pay attention to context!

Use of strategy depends on nature of data, computation resources, etc.

A Temp C

12 80 1

5 4 7

4 6 6

9 600 15

Item

1

2

3

4

A Temp C

12 80 1

5 4 7

4 6 6

- - -

A Temp C

12 80 1

5 4 7

4 6 6

9 30 15

A Temp C

12 80 1

5 4 7

4 6 6

9 4 15

Original Data Remove Impute Column Mean kNN-Imputation (k=1)



Inconsistent Data – Outlier Handling

Outlier Handling

 Detecting outliers?

Univariate: Use boxplots!

Source: whatissixsigma.net



Inconsistent Data – Outlier Handling

Multivariate: e.g., use linear regression with data point error
 Note: there are more advanced strategies (e.g., Minkowski error)

 Feel free to inform yourself on these – strategy selection is important here, too:

 Outliers may actually be valuable data points!

Source: kdnuggets.com



Case Study: Cleaning Data



Case Study: Cleaning Data

Nothing (too obvious) to do here 



Data Science Pipeline

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Analyzing Data: Exploratory Data Analysis (EDA)

 Investigating data with the goal of producing insights

 Gained knowledge should later be transformed into model features

More colloquially: „trying to understand the data“
 Understand the features given in the data

 Find patterns in the data

 Distribution of features

 Correlation between features



EDA: A Starting Point



Case Study EDA: Correlations



Correlation Does Not Imply Causation!

http://www.tylervigen.com/spurious-correlations



Case Study: Does the season affect bike usage?



Case Study: Does the time of day affect bike usage?



Case Study: Difference between user classes?



EDA: Visualizations –Bad Plots

Note: all visualizationstaken from http://wtfviz.net



EDA: Visualizations – Bad Plots



EDA: Visualizations – Bad Plots



EDA: Visualizations – Bad Plots



EDA: Plotting Do‘s and Don‘ts

 Do ensure your visualization answers a question

 Do aim for simplicity, consistency

 Do carefully select the right type of plot for your statement

 Do provide consistent and clear labels

 Do make your charts readable

 Don‘t overload graphs

 Don‘t use too many colors

 Don‘t distort data (setting bad axis limits, scales, etc.)

 Don‘t change your style in the course of a project

 Don‘t make readers guess (see clear labels)



Case Study: Next Step

Objective
(predict # of rides)

Collect Data Wrangle Data

Analyze Data
(„understand“ the data)

ModelingVisualize/Report 
Results

Given in task description Given by datasets



Predictive Modeling

Major steps: feature engineering and model building

 Feature engineering: turn insights from EDA into features that help with
prediction

Coming up with features is difficult, time-consuming, requires expert knowledge. 
"Applied machine learning" is basically feature engineering.

— Andrew Ng (Co-Founder of Coursera, Chief Scientist at Baidu)

 Critical: domain knowledge



Feature Engineering – Common Practices

 Features are usually engineered as functions of already existing features

 Alternatively: create features from external data sources

 Possible functions: ratios, differences, categorizations, …

 Possible external sources: event databases, weather databases, …

 A creative process!

 Sidenote: neural networks can learn features themselves
 In many cases better than those created by engineering – drawbacks?



Feature Engineering – Examples

 Consider Twitter:
 Goal: predict which users are the most influential users in the network
 Dataset features: number of followers, number of followees
 Number of followers expressive?

 Yes, to a certain extent: often following exchanges to boost follower numbers

 Better feature: ratio of followers to followees
 Intuition behind: really influential users have much more followers than followees

 Consider Intrusion Detection Systems (IDS):
 Goal: given on packet level data, predict whether packet is malicious
 Dataset features: packet length, header fields, packet type
 Good features: classifications based on different combinations of features

 Intuition behind: attacking packets typically follow a certain signature



Case Study: Feature Engineering



Building A Model

1. Have a good idea for how to model and evaluate the task.

2. Pick the right algorithm for the task.

3. Split the data into train and test (and possibly validation) data

4. Fit model on train data

5. Test the model on the test data

6. If result is not good enough: return to EDA / feature engineering



Case Study: Building A Model

 Have a good idea to model the task
 Usually result of EDA

 In this case: build two models, one for registered, one for casual users



Case Study: Building A Model

 Have a good idea to evaluate the model
 A lot of metrics available: 

 Mean Absolute Error (MAE)

 Mean Squared Error (MSE)

 Area under ROC (AUC)

 F1-Score

 … (see later lectures)

 In this case: our predicted numbers should be as close to reality as possible
 Need: low average error

 Decision: use MAE (why: ideas? If not, see later lectures)



Case Study: Building A Model

 Pick the right algorithm for the task.
 Regression vs classification vs image detection vs…

„We need a prediction of usage numbers for our system for every hour of the 
week“

 Clearly a regression problem! 

 Would applying a classification model work?

 Possible candidates?
 Linear regression, Random Forest regression, kNN regression, …



Case Study: Building A Model

 Pick the right algorithm for the task.



Case Study: Building A Model

 Split your data into train and test (and possibly validation) data



Case Study: Building A Model

 Fit the model on train data
 First step: determine what needs to be predicted (target)

 Then: fit model so that cost function is minimized wrt target



Case Study: Building A Model

 Test the model on test data wrt evaluation metric

MAE = 70.03 – our hourly prediction is 70 users off by average.
 Is this good enough? 

 Average user count:
 ~200 -> more than 30% error

 Clearly not good enough!



Case Study: Building A Model

 Let‘s try a different algorithm

MAE = 17.84
 A huge improvement simply by taking a ‚better‘ algorithm.



Case Study: Building A Model

 Test the model on test data wrt evaluation metric
 Used standard parameters for RandomForest regressor

 Result can be further improved by tuning parameters and coming up with
additional features.

 Explanation of algorithm & parameter tuning: see later lectures



Case Study: Building A Model

 Repeat for Casual users:

Model is not better:
 Counts are also lower!



Case Study: Building A Model

 Putting things together:
 So far, two different counts from two single models.

 Need to blend these counts into each other (you might even call it ensembling)

 Here: simple sum

 For every hour, our model can on average predict the accurate ride
count with an error of ~21 rides!
 Good enough?



Case Study: Building A Model

 Evaluating the model (aka: Are our features useful?)



Summary

 In this course, we focus on two key aspects of Data Science:
 Exploratory Data Analysis (EDA)

 Predictive Modeling

 …and how to combine them such that the model benefits from EDA

We have…
 …seen a case study of how to explore a simple dataset

 …transformed results from EDA into features

 …built a simple, yet expressive model and evaluated an error metric



Summary

Only used four tools/libraries:
 IPython Notebook / Jupyter Notebook

 Pandas for data manipulation and exploration

 Seaborn for data visualization

 Scikit-learn for predictive modeling and evaluation

Next week: An overview of the Python Data Science Stack

 Further lectures:
 Algorithms: How do RandomForests (and others) work?

 Model evaluation: How to choose metrics, how to prevent overfitting, etc.



Task 1

 Basically: Recap what you have learned today
 Next week: introduction of Python libraries to do the job

 Instead of bike sharing: predict wine quality

We use Kaggle InClass for submissions. 
 You need to register at Kaggle.com (please use university email address)

 Please set your screenname (not username) to something that identifies you
 E.g., first name + last name initial, matriculation number, …

 Or let me know by email which name you are submitting under

 Task description, data, etc at:

https://www.kaggle.com/c/m-inf-1800-ws-17-18-task-1/

https://www.kaggle.com/c/m-inf-1800-ws-17-18-task-1/


Task 1

 Start date: now!

 Deadline: Wed, Nov 15th, 23:59 (4 weeks)
 Kaggle will not accept further submissions after that deadline, and neither will I

 For this task: no teams

 You will have 5 submissions to the system every day

 You can select 2 submissions for final grading in the end

 Presentations or Submissions (will be decided after 2 weeks): Nov 16th


