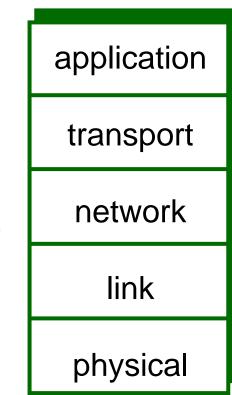
Exercise 1

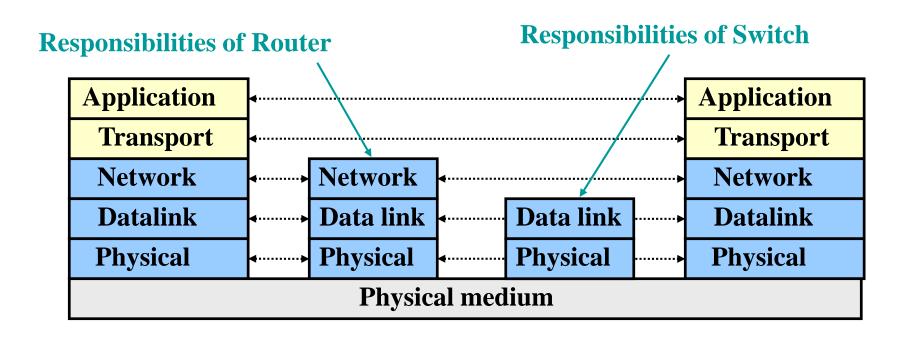
Yachao Shao, M.Sc. yshao@gwdg.de

Notes

- Introducing myself.
- Doing Exercises by yourself!
- o Do you want the full score?
- Have Questions?
- o Not enough questions?
- Practical Networking Course


Q1

 In the Internet, what are the five layers, from top to bottom, in the Internet protocol stack? Till which layer does a switch process?
 Please make sure you understand the concept of layering and also think about advantages and disadvantages of layering.


1. The five layers

- A switch processes up to layer
 2. It uses the physical and the link layer.
- Advantages: Isolation, transparent to changes in other layers
- Disadvantages: Isolation ;),
 cannot optimize across layers

1. The five layers

 The ISO/OSI reference model adds two layers. What is the purpose of the session layer? Does the current Internet implements a session layer?

2. ISO/OSI

- Session layer is responsible for synchronization and recovery of data exchange.
 - Today's Internet does not typically implement Session layer and nodes are identified by IP addresses. If connection breaks or IP changes, session typically fails.
- Presentation layer takes care of data interpretation, e.g. compression, en- and decryption etc.

 What is the difference between the client/server model and the peer-to-peer model?

3. Client/Server and P2P

- Client/Server: Client requests, server delivers (typically always-on!).
 - Examples: Web browser and server, email client and server
- Peer-to-Peer model: Everybody serves as client and server. Typical setup of file sharing systems, but also used in Skype. No always-on etc.
 - Often P2P operates between end hosts and is not or only lightly infrastructure supported.)

 Circuit switching versus packet switching: Assume all traffic sources to be bursty: what switching technology is preferable? What are the advantages of the other technique?

4. Circuit vs. Packet switching

- If sources are bursty they do use the bandwidth only for short timeslots. The burst-process is random.
 - Randomness: Hard to deal with in circuit switching but easy to do with packet switching.
 - Circuit switching has lots of wasted bandwidth with bursty sources, packet switching scales better.
- Even if the sources are bursty, QoS reason can make it indispensable to use circuit switching

 In what switching technology is Frequency or Time Division Multiplexing used?

5. FDMA and TDMA

- Only in shared media, Multiple Access protocols to guarantee resource allocation via channel partitioning
- Divides a shared channel in fixed timeslots or frequency slots.

FDMA and TDMA are used in circuit switching.

• What is "statistical multiplexing"?

6. Statistical multiplexing

- Occurs in packet switching
- Statistical multiplexing: Sequence of sending packets does not have a fixed pattern
 - No definite prediction possible
 - This has implications for router queues etc.

 What are the four sources of packet delay? How does loss occur?

7. 4 Sources of packet delay

- Nodal processing: Error checks and link determination
- Queuing: Congestion at router? Time wait at output link (e.g. when shared channel is busy)
- Transmission delay: Writing data to the link
- Propagation delay: Typically the speed of light and level 1 processing.

7. Loss

- If router queues are full, new packets are just dropped
- Physical influences: Interruption in communication, especially in wireless communications

