Computer Networks Homework #11

January 18th 2018

Alessio Silvestro Alessi.Silvestro@gmail.com

Exercise Exam + Q&A

- Exercise exam
 - Available in wiki
 - Intended for self-study; there will be no answer sheet or exercise session
- Question and Answer Session
 - January 25th 2018
 - Entirely for your benefit!
 - $_{\circ}~$ If there are no questions, there will be no answers
 - If you want a well prepared answer, please send us an email in advance

Quick Review

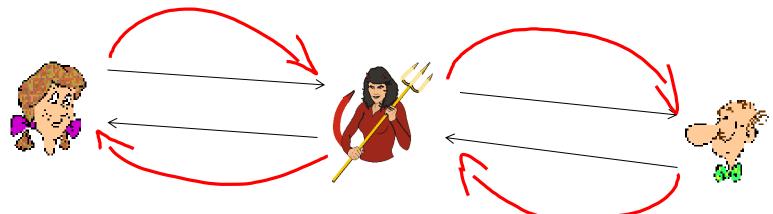
 https://www.youtube.com/watch?v=Rgz6Fa23 gis

1 -- NetSec

 What are the security concerns network security is targeting at? What main areas of protection does network security cover?

1 -- NetSec

- <u>Confidentiality</u>: only sender, intended receiver should "understand" message contents
- <u>Authentication</u>: sender, receiver want to confirm identity of each other
- <u>Message integrity</u>: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- <u>Access and availability</u>: services must be accessible and available to users


2 -- Cryptography

- What are the two main types of cryptography regarding Keys' type?
- Symmetric crypto (encryption + decryption with the same key): DES, 3DES, AES etc.
- Asymmetric crypto (enc and dec with different keys): RSA, Public/Private keying, Diffie-Hellman

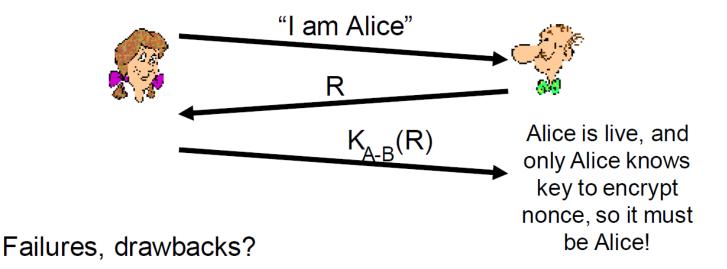
3 -- Authentication

 What is a man-in-the-middle attack? Is public key cryptography save against that type of attack?

 Asymmetric keying only helpful if public keys are pre-known or certificate bound.

4 -- Authentication

- What other tricks does attackers use to overcome authentication protection? Please explain using the AP protocols presented in the lecture.
- AP 1.0/2.0 Just faking IDs ("I am Alice") or spoofing an IP address
- Often record and playback attacks as in AP 3.0/3.1


5 -- Nonces

What is the purpose of a nonce in an endpoint authentication protocol?

Goal: avoid playback attack

Nonce: number (R) used only once -- in-a-lifetime

<u>ap4.0:</u> to prove Alice "live", Bob sends Alice a nonce, R. Alice must return R, encrypted with shared secret key

6 -- Hashes

- What is the conceptual difference between a crypto-hash function and other hash functions?
 - computationally infeasible to find two different messages, x, y such that H(x) = H(y)
 - equivalently: given m = H(x), (x unknown), can not determine x.

- SHA-1, MD5 operate without a shared secret
- Additionally, key based Hash-based MACs (HMACs) HMAC-MD5 or HMAC-SHA1 available e.g. for signatures

 Perform an RSA encryption and decryption with p=7 and q=11 with the word "Telematics".

n=7*11=77 (prime factors 7, 11) z=(7-1)(11-1)=60 (prime factors 2, 2, 3, 5)

e needs to be chosen in a way, that it has no common prime factors with z e=7 now we search for a d with e * d - 1 mod z = 0. With d=43 we have e*d-1 mod 60 = 300 mod 60 = 5

$PK = \frac{5}{2}e_{i}n\xi$ m < n (m can be very large!) $SK = \frac{5}{2}e_{i}n\xi$

			chiffre=m^e		
Klartext		m^e	mod n	c^d (here: chiffre ^46)	c^d mod n
а	1	1	1	1	1
b	2	128	51		
с	3	2187	31	13444753212776963019174122373997438185440200300120230113873520991	3
d	4	16384	60		
E	5	78125	47	794708560552308362507026214655083140659880205559381016431673633560574223	5
F	6	279936	41		
G	7	823543	28		
Н	8	2097152	57		
i	9	4782969	37	27081588506598106040982953896258749653831334409506086433262944331453	9
j	10	1000000	10		
k	11	19487171	11		
I	12	35831808	12	25397652694505813866070015990659936347412758528	12
m	13	62748517	62	118261299920216034323567158324881157722618355000741423528102151243191317168128	13
n	14	105413504	42		
о	15	170859375	71		
р	16	268435456	58		
q	17	410338673	52		
r	18	612220032	39		
s	19	893871739	68	6278895373298528368344913294912019325279912443533041880115104685557599470354432	19
t	20	1280000000	48	1965048198399560713177500537391830916254451560885426333004585474449211392	20
u	21	1801088541	21		
v	22	2494357888	22		
w	23	3404825447	23		
x	24	4586471424	73		
у	25	6103515625	53		
z	26	8031810176	5		

Telematics = 48 47 12 47 62 01 48 37 68

We are encrypting letter by letter, remember cipher algos and consider large m!

7 – Authenticate Big Messages

- 1. Alice: $M_C = K^-_A(M) \rightarrow Bob: K^+_A(M_C)$
- 2. Alice: $[M_C = K_A^-(H(M))] + M \rightarrow Bob: K_A^+(M_C)$ and H(M)

8 – Secure Big Messages

- 1. Alice: $M_C = K^+_B(M) \rightarrow Bob: K^-_B(M_C)$
- 2. Efficient Way
 - 1. Share a symmetric key (K_S) using public key: Alice: $K^+_B(K_S) \rightarrow Bob: K^-_B(K_S)$
 - 2. Send big message using shared symmetric K_S Alice: $M_C = K_S (M) \rightarrow Bob: K_S(M_C)$

Thank you

Any questions?

