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Local optima
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Local optima – contour plot
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One dimensional search strategies
The one-dimensional search problem

Local maxima/minima: a, b, d, e, f, g, h
Saddle point: c
Weak local maxima: d, e
Global maximum: g
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Multi dimensional search strategies
The multi-dimensional search problem
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Stochastic methods

When problem structure is not well known, it might be hard to
design appropriate deterministic search methods

Solution: randomised search approaches

Search space spanned by possible configurations for all parameters

Solutions found are not necessarily optimal
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Local random search heuristics

Local random search
Intuitive way to climb a mountain (by a sightless climber)

Local random search

∀x in search space S , define non-empty neighbourhood N(x) ⊆ S
Iteratively draw one random sample x ′ ∈ N(x).
Fitness improved (F (x) > F (x ′)) ⇒ new best search point.
Otherwise ⇒ discarded.
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Local random search heuristics

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

N

N(x) = x or N(x) = S valid, but original idea is that N(x) is small
set of search points.

Points x ′ ∈ N(x) expected nearer to x than points x ′′ 6∈ N(x)

Typically, x ∈ N(x)
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Local random search heuristics
Complexity reduction by restriction of the search space size

Example: S = {0, 1}n and Nd (x) are all
points y with Hamming distance smaller
than d (H(x , y) ≤ d)

For constant d we obtain:
|Nd (x)| = Θ(nd )� |S | = 2n

d ≤ 1 d ≤ 2 d ≤ 3
1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 1 0 1 1 1 0 1 1

0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 1

0 1 0 0
0 1 1 1
1 1 0 1
1 0 0 1

|Nd (x)| =

(
n
d

)
+

(
n

d − 1

)
+ · · ·+

(
n
1

)
+

(
n
0

)
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Local random search heuristics

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

N

Small neighbourhood: Fast conversion to local optima

Large neighbourhood: Similar to random search

Variable neighbourhood :

Initially, big neighbourhood, then decrease
Challenge: Decrease not too fast
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Local random search heuristics

Local optima avoidance: Multistart

Search applied t times on problem

Probability amplification : respectable
result also with low success probability

Assume: success probability δ > 0
for one iteration

After t iterations overall success
probability: 1− (1− δ)t

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Machine Learning and Pervasive Computing



Local random search Metropolis Simulated Annealing Tabu search Evolutionary

Outline

Local random search

Metropolis random search

Simulated annealing

Tabu search

Evolutionary random search
Overview
History
Limitations
Design aspects

Machine Learning and Pervasive Computing



Local random search Metropolis Simulated Annealing Tabu search Evolutionary

Metropolis algorithms

Local random search: only multistart can avoid local optima.

Metropolis approach accepts also search
points that decrease fitness value

F (x ′) > F (x) ⇒ x ′ discarded with prob.

1− 1

e(F (x ′)−F (x))/T

T → 0 random search

T →∞ uncontrolled local search 0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Exceeds

size
Neighbourhood
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Simulated annealing

Choice of optimal T not easy ⇒ Change during optimisation

Initially: T should allow to ’jump’ to other regions of the search
space with increased fitness value

Finally: Process should gradually ’freeze’ until local search
approach propagates the local optimum in the neighbourhood

Analogy to natural cooling processes in the creation of crystals:

Temperature gradually decreased so that Molecules that could
move freely at the beginning are slowly put into their place

Machine Learning and Pervasive Computing



Local random search Metropolis Simulated Annealing Tabu search Evolutionary

Simulated annealing

No natural problem known for which it has been proved that
Simulated Annealing is sufficiently more effective than the
Metropolis algorithm with optimum stationary temperature

Artificially constructed problems exist, for which this could be
shown
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Tabu search

Algorithms discussed so far
only store the actual search
point

Sim. Annealing/Metropolis Search point
with the best fitness value
achieved so far is stored
typically.

Other points Knowledge about all other
points is typically lost

Algorithms might therefore
access suboptimal points
several times

⇒ Increased optimisation time

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
N
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Tabu search
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point
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Tabu search

Tabu Search Store list of search points
that have recently been
accessed.

Due to memory restrictions
the list is typically of finite
length

When at least size of the
neighbourhood N(x) covered,
terminate when the all points
visited.

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
N
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Evolutionary algorithms

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Utilise evolution principles for optimisation purposes

Evolutionary algorithms combine Genetic algorithms, Evolution
strategies, Evolutionary programming and Genetic programming
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Evolutionary algorithms

Initialisation

Initialise µ individuals from the search
space S

Typically uniformly at random

Typical search spaces: S = Rn or
S = Bn

Achieve sufficient coverage:

Distance measure d
distance ≥ d

Improve optimisation time and quality
of solution:

fast heuristics for individual
population

Machine Learning and Pervasive Computing



Local random search Metropolis Simulated Annealing Tabu search Evolutionary

Evolutionary algorithms

Fitness weighting of the population

Individuals of population weighted for
their fitness value.

Fitness function f : S → R

Monotonous function
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Evolutionary algorithms

Selection for reproduction

Dependent on fitness values reached
by individuals

individuals chosen to produce offspring
population

Intuition:

Individuals with good fitness value:
Higher probability to produce
high-rated individuals for offspring
population
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Evolutionary algorithms

Variation

Offspring population created by
mutation and/or crossover.

Mutation is typically local search
operator

Crossover allows to find search points
in currently not populated regions

Adaptive implementations possible
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Evolutionary algorithms

Mutation

Produces individuals that differ only slightly from the
parent-individuals.

One parent individual produces one offspring individual

Mutation operators differ between search spaces.
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Evolutionary algorithms

Crossover

Crossover is a variation technique that produces one or more
offspring individuals from two or more parent individuals
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Evolutionary algorithms

All newly generated offspring
individuals are weighted by a fitness
function f .

Structure of f impacts performance of
random search approach

Weak multimodal vs. strong
multimodal
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Evolutionary algorithms

Selection for substitution

Population size increased due to
variation

Reduce population size to µ

Typically: Individuals with higher
fitness values more probable
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Evolutionary algorithms

+ and , strageties

(µ+ λ) strategies: Offspring population chosen from µ old
individuals ’+’ λ offspring individuals

(µ, λ) strategies: µ individuals drawn from λ offspring individuals
while µ old individuals are discarded

Comma-strageties try to avoid local optima

Machine Learning and Pervasive Computing
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Evolutionary algorithms

Since global optimum not known, stop
criteria required
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Evolutionary algorithms
History – Genetic algorithms

Proposed by John Holland 1

Binary discrete search spaces: {0, 1}n

Fitnessproportional selection

For m individuals x1, . . . , xm the probability to choose xi is
f (xi )

f (x1)+···+f (xm) .

Main evolution operator is crossover

Originally One-point crossover

The main goal was not optimisation but the adaptation of an
environment

1
J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
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Evolutionary algorithms
History – Genetic algorithms

The hope associated with genetic algorithms was that they
are able to solve some functions especially well

Separable function

A function is called separable, if the input variables can be divided
into disjoint sets X1, . . . ,Xk with f (x) = f1(X1) + · · ·+ fk (Xk )

Since genetic algorithms utilise crossover, it was expected that
they are therefore well suited to quickly find the optimum on
separable functions
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Evolutionary algorithms
History – Genetic algorithms

Royal road functions

k blocks of variables of length l are formed. On each block Xl the
identical function fl is implemented with

fl (Xl ) =

{
1 All variables in Xl equal 1
0 else.

It was shown that genetic algorithms do NOT perform well on
these functions.2

The reason is that it is highly unlikely to perform crossover
exactly at the border of the variable blocks.
It is better to optimise the single blocks on their own
separately by mutation.

2
T. Jansen and I. Wegener, Real royal road functions – where crossover provably is essential, Discrete applied

mathematics, Vol. 149, Issue 1-3, 2005. Machine Learning and Pervasive Computing
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Evolutionary algorithms
History – Evolution strategies

Proposed by Bienert, Rechenberg and Schwefel3 4

At first only steady search spaces as Rn

No Crossover

Only mutation

First mutation operator: Each component xi is replaced by
xi + Zi (Zi normally distributed, σ2 Variance)

3
I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen

Evolution, 1973.
4
H.P. Schwefel, Evolution and optimum seeking, 1993
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Evolutionary algorithms
History – Evolution strategies

1/5 rule

After 10n iterations, the variance is adopted every n iterations.
When the number of accepted mutations in the last 10n steps is
greater than 1/5, σ is divided by 0.85 and else multiplied by 0.85.

This heuristic is based on an analysis of the fitness function
x21 , . . . , x

2
n – the sphere model.
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Evolutionary algorithms
History – Evolutionary programming

The approach was proposed by Lawrence J. Fogel56

Various similarities to evolution strategies

Search Space: Space of deterministic finite automata.

5
L.J. Fogel, Autonomous automata, Industrial Research, Vol. 4, 1962.

6
L.J. Fogel Biotechnology: Concepts and Applications, Prentice-Hall, 1963
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Evolutionary algorithms
History – Genetic programming

Proposed by John Koza7

Search space: Syntactically correct programs

Crossover more important than mutation

7
John Koza Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT

Press, 1992
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Evolutionary algorithms

Since evolutionary approaches are typically slow to initially
find a search point with a reasonable fitness value,

Approaches are combined with fast heuristics that initially
search for a good starting point.

Afterwards the evolutionary approach is applied
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Limitations of evolutionary approaches

It has been argued that

Problem specific algorithms better than evolutionary on small
subset of problems

Evolutionary algorithms better on average over all problems

Evolutionary algorithms proposed as general purpose optimisation
scheme
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Limitations of evolutionary approaches
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Limitations of evolutionary approaches

Can an algorithm be suited for ’all’ problems?

Distinct coding of the search space

Various fitness functions

What does ’all problems’ mean?

All possible representations and sizes of search space

All possible fitness functions

Every single point is the optimum point in several of these
problems

Can one algorithm be better on average than another algorithm on
’all’ problems?
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Limitations of evolutionary approaches
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Limitations of evolutionary approaches

Wolpert and Macready formalised this assertion:8

F Set of all functions f : S →W

S and W finite (every computation on physical computers
only has finite resources)

Fitness function evaluated only once per search point

A(f ) number of points evaluated until optimum is found

8
D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Optimisation, IEEE Transactions on

Evolutionary Computation 1, 67, 1997.
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Limitations of evolutionary approaches

No free lunch theorem

Assume that the average performance of an algorithm in the No
Free Lunch Scenario for S and W is given by AS ,W , the average
over all A(f ), f ∈ F . Given two algorithms A and A′, we obtain
AS ,W = A′S ,W

This means that two arbitrary algorithms perform equally well
on average on all problems
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Limitations of evolutionary approaches

Proof of the No Free Lunch Theorem

W.l.o.g.: W = {1, . . . ,N}
We consider sets Fs,i ,N of all functions f on a search space of
non-visited search points of size s with at least one x with f (x) > i
Observe that for every function f and every permutation π also fπ
belongs to Fs,i ,N
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Limitations of evolutionary approaches

Proof of the No Free Lunch Theorem

Proof by induction over s := |S |.
Induction start: s = 1

Every algorithm has to choose the single optimum search point
with its first request.
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Limitations of evolutionary approaches

Proof of the No Free Lunch Theorem

Induction: s − 1→ s
Define a : S → N so that ∀x ∈ S the share of functions with
f (x) = j is exactly a(j).

This is independent of x , since all permutations fπ of a function f
also belong to Fs,i ,N

a(j) is therefore the probability to choose a search point with
fitness value j (Independent of the concrete algorithm A)
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Limitations of evolutionary approaches

Proof of the No Free Lunch Theorem

Induction: s − 1→ s

With probability a(j) an algorithm A finds a search point with
fitness value j .

Count of functions f (x) = j is equal to the number of functions
fπ(y) = j , since all permutations of f are also in Fs,i ,N .

The probability to achieve a fitness value j > i is therefore
independent of the algorithm.

Machine Learning and Pervasive Computing
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Limitations of evolutionary approaches

Proof of the No Free Lunch Theorem

Induction: s − 1→ s

With probability a(j) an algorithm A finds a search point with
fitness value j .

If j ≤ i , x is not optimal in scenario Fs,i ,N and the new scenario is
Fs−1,i ,N

Machine Learning and Pervasive Computing
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Limitations of evolutionary approaches

Proof of the No Free Lunch Theorem

Summary – in other words:

For any two algorithms we can state a suitable permutation of the
Problem-function for one problem (i.e. state another problem), so
that both algorithms in each iteration request identical search
points.

Especially, since every search point could be optimal, there are
always algorithms that request the optimal search point right
from the start.
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Limitations of evolutionary approaches

NFL is possible, since ALL algorithms and ALL problems are
considered

Is there an NFL valid in smaller, more realistic scenarios?

In 9 a similar theorem was proved for more realistic problem
scenarios.

9
S. Droste, T. Jansen and I. Wegener, Perhaps not a free lunch but at least a free appetizer, Proceedings of

the 1st Genetic and Evolutionary Computation Conference, 1999.
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Design aspects of evolutionary algorithms
Selection principles

Uniform selection

Individuals chosen uniformly at random

Deterministic selection

Deterministically choose the highest rated individuals for the
selection

Threshold selection

Candidates for offspring population drawn uniformly at random
from the t highest rated individuals

Machine Learning and Pervasive Computing
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Design aspects of evolutionary algorithms
Selection principles

Fitnessproportional selection

For population xi , . . . , xn individual xi chosen with

p(xi ) =
f (xi )

f (x1) + · · ·+ f (xn)

Draw random variable u from [0, 1] and consider xi if

p(x1) + · · ·+ p(xi−1) < u ≤ p(x1) + · · ·+ p(xi )

Frequently applied for evolutionary approaches
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Design aspects of evolutionary algorithms
Selection principles

Problems with Fitnessproportional selection

Linear modification of the fitness function (f → f + c) results
in different behaviour
When fitness values sufficiently separated, selection is nearly
deterministic
When deviation in fitness values is small relative to absolute
values, similar to uniform selection

Machine Learning and Pervasive Computing
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Design aspects of evolutionary algorithms
Variation operators – Mutation

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Mutation creates one offspring individual from one individual

Operators are designed for specific search spaces

Shall apply only few modifications of individuals on average

Distant individuals have smaller probability
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Evolutionary algorithms
Variation operators – Mutation

Mutation operators for individuals from Bn (similar operators for
other search spaces):

Standard bit mutation

Offspring individual created bit-wise from parent individual

Every bit ’flipped’ with probability pm

Common choice: pm = 1
n

1 bit mutation

Offspring individual identical in all but one bit.

This bit chosen uniformly at random from all n bits
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Design aspects of evolutionary algorithms
Variation operators – Crossover

Crossover typically takes two individuals and results in one or
two offspring individuals

Also crossover of more than two individuals possible
Often generalisations of the two-individual case

Distinct crossover methods for various search spaces

Crossover parameter pc specifies the probability with which
crossover (and not mutation) is applied for one selected
individual

In some cases (e.g. binary coded numbers) not all positions in
the individual string are allowed to apply crossover on
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Design aspects of evolutionary algorithms
Variation operators – Crossover

Typical crossover variants

One-point crossover

k-point crossover

Uniform crossover

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
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Evolutionary algorithms
Variation operators – Crossover operators for Bn (Other search spaces similar)

One-point crossover: Individual x ′′ from two individuals x and x ′

according to uniformly determined crossover position:

x ′′j =

{
xj if j ≤ i
x ′j if j > i
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Evolutionary algorithms
Variation operators – Crossover operators for Bn (Other search spaces similar)

k-point crossover: Choose k ≤ n positions uniformly at random:

x1 = x11, x1,2, . . . , x1,k1 |x1k1+1, . . . , x1k2 |x1k2+1, . . . , x1n

x2 = x21, x2,2, . . . , x2,k1 |x2k1+1, . . . , x2k2 |x2k2+1, . . . , x2n

y1 = x11, x1,2, . . . , x1,k1 |x2k1+1, . . . , x2k2 |x1k2+1, . . . , x1n

y2 = x21, x2,2, . . . , x2,k1 |x1k1+1, . . . , x1k2 |x2k2+1, . . . , x2n
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Evolutionary algorithms
Variation operators – Crossover operators for Bn (Other search spaces similar)

Uniform crossover: Each bit chosen with uniform probability from
one of the parent individuals
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Design aspects of evolutionary algorithms
Discussion

Easy implementation EAs are easy to implement when compared
to some specialised approaches

Computationally complex However, EAs are computationally
complex

⇒ It is therefore beneficial to implement efficient
variants to the distinct methods
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Design aspects of evolutionary algorithms
Discussion

Pseudo random bits Generation of PRB important for many of the
theoretic results for EAs to hold

Reduce random experiments More efficient to calculate the next
flipping bit in a mutation instead of doing the
calculation for every bit independently
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Design aspects of evolutionary algorithms
Discussion

Fitness value calculation Most of the computational time is
typically consumed by the fitness calculation

Prevent re-calculation for individuals Dynamic data structures that
support search and insert
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Outline

Local random search

Metropolis random search

Simulated annealing

Tabu search

Evolutionary random search
Overview
History
Limitations
Design aspects
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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