SOFTWARE-DEFINED NETWORKING
SESSION 1V

WORKS

This Lecture

Application layer | l
Business applications JJ
Control layer
SDN L
control :
Network
coftware etwork services

Control plane-data plane interface

(for example; OpenFlow)
Infrastructure layer

Network device

Network device Network device

Network device Network device

SDN Controllers

* SDN promises to facilitate network management and ease
the burden of solving networking problems

* Main means: the logically-centralized control offered by a
network controller (or network operating system (NOS))

* Crucial value of a controller is to provide abstractions,
essential services, and common application programming
interfaces (APls) to developers.

WORKS

Controller interact both northbound and southbound!

Application layer

Business applications

API API API
Control layer
SDN L _IJ
control :
software Network services

Control plane-data plane interface

(for example; OpenFlow)
Infrastructure layer

Network device Network device Network device
Network device Network device

WORKS

Centralized Control

Controller

Distributed Control

Controller

Controller

=l

Centralized Controllers

*Single entity that manages all forwarding devices of the
network.

Single point of failure and may have scaling limitations.

* May not be enough to manage a network with a large number of
data plane elements.

WORKS

Centralized Controllers - Examples

* NOX/POX, Beacon, Floodlight, ...

* NOX-MT, Beacon and Floodlight: designed as highly
concurrent systems
* Goal: achieve throughput required by enterprises and data centers.

* Beacon can deal with more than 12 million flows per second by
using large size computing.

* Other centralized controllers such as Trema or Ryu target
specific environments (e.g., carrier networks)

WORKS

Distributed Controllers

e A distributed controller can be a centralized cluster of
nodes...
* high throughput for very dense data centers

e ...0or a physically distributed set of elements
* more resilient to different kinds of logical and physical failures.

* Multiple data centers interconnected by a wide area
network

* Hybrid approach: clusters of controllers inside each data center and
distributed controller nodes in the different sites

WORKS

Distributed Controllers

* Consistency semantics: weak or strong

* Weak: data updates on distinct nodes will eventually be updated on
all controller nodes.

* implies that there is a period of time in which distinct nodes may read
different values (old value or new value) for the same property.

* Strong: all controller nodes will read the most updated property
value after a write operation.

* Impact on system performance
» Offers a simpler interface to application developers.

* Failure recovery

WORKS

Distributed Controllers - Examples

* Onix, HyperFlow, HP VAN SDN, ONQS, DISCO, Fleet...

* Most offer weak consistency semantics
* Only Onix and ONOS provide (close to) strong consistency

* Some controllers tolerating crash failures

* But: Controllers do not tolerate arbitrary failures

* Any node with an abnormal behavior will not be replaced by a
potentially well behaved one

WORKS

10

Distributed Controllers - Operation

e * Single point of failure
v s /‘ * Performance bottleneck
[—x=] [—x=]
Distrib ‘Cﬁn”tﬁolPlane
K /y}-gzd/ ID S S S. /
I I I PR AV N | I
| | L.~ 7 A N\ S S | |
! ! _-r o2 W eSO : !
| v _-" 0.7 0y L\ 1INC S |
| P g < // I I —@ I \\ I
I I | — I
L | |
I I
I

7/ | \
,‘Physical Ne:u'/\/ork Infrastrut\tdre
I I

D —

Spatial Partitioning

12

N
WORK

Shrinking the Control Plane

14

Goals

*Build a distributed control plane which
*L.oad balances

*Grows
*Shrinks

*Requires
*Load estimation at controllers

*Switch migration protocol
* Consistency protocols

WORKS

15

Kreutz, Diego, et al. "Software-defined networking: A comprehensive

survey."Proceedings of the IEEE 103.1 (2015): 14-76.

comput
NET
WORKS

SDN Controllers

TABLE VI
CONTROLLERS CLASSIFICATION

Name Architecture Northbound API Consistency Faults License Prog. language Version
Beacon [56] centralized multi-threaded ad-hoc API no no GPLv2 Java v1.0
DISCO [155] distributed REST —_ yes —_ Java vl.1l
ElastiCon [22Y] distributed RESTful API Ves no — Java v1.0
Fleet [200] distributed ad-hoc no no —_ —_— v1.0
Floodlighe [159] centralized multi-threaded RESTful API no no Apache Java vl.l
HF VAN SDN [[54] distributed RESTful API weak yes —_ Java v1.0
HyperFlow [195] distributed —_ weak yes —_ C++ v1.0
Kandoo [23(0] hierarchically distributed —_ no no —_ C, C++, Python v1.0
Omix [7] distributed NVF NBAFPI weak, strong yes commercial ~ Python, C v1.0
Maestro [58] centralized multi-threaded ad-hoc API no no LGPLv2.1 Java v1.0
Mendian [[92] centralized multi-threaded extensible API layer no no —_ Java v1.0
MobileFlow [223] —_ SDMN AFI —_ —_ —_ _ vl.2
MuL [231] centralized multi-threaded multi-level interface no no GPLv2 C v1.0
NOX [26] centralized ad=hoc AFPI no no GPLv3 C++ v1.0
NOX-MT [157] centralized multi-threaded ad-hoc API no no GPLv3 C++ v1.0
NVP Controller [112] distributed — — — commercial e —
OpenContrail [153] —_ REST AFI no no Apache 2.0 Python, C++, Java v1.0
OpenDaylight [3] distributed REST. RESTCONF weak no EPL v1.0 Java v1.{0.3}
ONOS [117] distributed RESTful API weak, strong yes —_ Java v1.0
PANE [197] distributed PANE AFI yes —_ —_ _ —_
POX [737] centralized ad-hoc API no no GPLv3 Python v1.0
ProgrammableFlow [23° centralized —_ —_ —_ —_ C vl.3
Pratyaastha [195] distributed —_— —_ _— —_ —_— —_
Rosemary [[94] centralized ad-hoc —_ _ —_ —_— v1.0
Ryu NOS [191] centralized multi-threaded ad-hoc API no no Apache 2.0 Python v1.{0.2.3}
SMaRtLighe [19Y] distributed RESTful API ves yes —_ Java v1.0
SMNAC [234] centralized ad=hoc AFPI no no GPL C++ v1.0
Trema [] centralized multi-threaded ad-hoc API no no GPLv2 C. Ruby v1.0
Unified Controller [171] — REST APFI — — commercial e v1.0
wvane [190] distributed file system —_ —_ —_ _ —_

16

Controller Architectures

TABLE V
ARCHITECTURE AND DESIGN ELEMENTS OF CONTROL PLATFORMS

Component OpenDaylight OpenContrail HP VAN SDN Onix Beacon
Base network Topology/Stats/Switch Routing, Tenant Aundit Log, Alerts, Discovery, Multi- Topology. device
services Manager, Host Isolation Topology. Discovery consistency Storage, manager, and routing
Tracker, Shortest Read State, Register
Path Forwarding for updates
East/Westbound | — Control Node (XMPP- Sync API Distribution YO module | Not present
APIs like control channel)
Integration OpenStack Neutron CloudStack, OpenStack | OpenStack - -
Plug-ins
Management GUI/CLI, REST API GUIL/CLI REST API Shell f GUI | — Web
Interfaces Shell
Northbound REST. REST- REST APIs (configu- | REST API, GUI Shell Onix API (general AP (based on
APIs CONF [201], Java ration, operational, and purpose) OpenFlow events)
APls analytic)
Service Service Abstraction — Device Abstraction API | Network Information —
abstraction Layer (SAL) Base (NIB) Graph
layers with Import/Export
Functions
Southbound OpenFlow, OVSDB, — OpenFlow, L3 Agent, OpenFlow, OVSDB OpenFlow
APIs or SNMF, PCEF, BGP, L2 Agent
connectors NETCONF

Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey."Proceedings of the IEEE 103.1 (2015): 14-76.
(umplm-rl
N E

WoR ks 17

That’s a lot of Choices!?

yThere are almost as many controllers for SDNs as
there are SDNs“ — Nick Feamster

Which controller should | use for what problem?

Which controller?

Concept?
Architecture?
Programming language and model?
Advantages / Disadvantages?
Learning Curve?
Developing Community?

Type of target network?

20

* The first controller
* Open source
e Stable

° 0 IOngr sﬂpported -

e ,New“ NOX: C++ only

* OF version supported: 1.0

S|

MOX

NOX Architecture

Granularity of

Control: Per
Elow Controller
maintains a
Stwor network view
View
switches and wireless OF
attached servers % :
=)) OpenFlow is
3| |H) & used to control
switches

ans for OF

for events

* Need to use low-level semantics of OpenFlow
* NOX does not come with many abstractions

* Need of good performance (C++)
* E.g.: production networks

POX
* POX = NOX in Python

* Advantages:

* Widely used, maintained and supported S
* Relatively easy to write code for ;gb

PO

* Disadvantage:

* Performance (Python is slower than C++)
* But: can feed POX ideas back to NOX for production use

WORKS

25

cbench “latency” (flows per second)

POX
NOX-Python
NOX-C++

40. 000 80. OOO

cbench "throughput" (flows per
second)

NOX-Python
NOX-C++

20. 000 40. 000 60.000

* Learning, testing, debugging, evaluation

In this class :)

* Probably not in large production networks

* Java

* Advantages:
* Documentation, §
* REST API conformity ':?’
* Production-level performance Floodlight

* Disadvantage:
* Steep learning curve

Floodlight: Users

o jf,,\r,;;;._
(7 ANTENGN
e i)
st H
HE!)
[| ® =4
N> 5
: N ¥ ¥
l n te -

Georgia = N
Tech|| — = =.=%T —

= i

CISCO.
Mlcrosoft

ciTrRIX JUNIPES

NETWORKS
CLEMS@&N D owvesin
uuuuuuuuuu lll A PASSAU

INDIANA UNIVERSITY UMIVERSITY OF
coh;anuNTr KENI UCKY' M

WORKS

Princeton
s University

N

THALES

C)I_\’ACI_€®
FU]ITSU

s) ARISTA

e I N,

Mellanox

EEEEEEEEEEEE

\J RMOUR

BROCADE Elbrys
- PLURIBUS
NETWORKS
NE(<LUXOFT
v nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Floodlight Adopters:

« University research
Networking vendors
Users
Developers / startups

29

Floodlight Overview

FloodlightProvider . . .
(IFloodlightProviderService) ¢ FIOOdhght IS a CO||eCtI0n Of mOdUIGS

TopologyManager
(ITopologyManagerService)

 Some modules (not all) export
LinkDiscovery Services

(ILinkDiscoveryService)

Forwarding e All modules in Java

DeviceManager

(IDeviceService) . .

* Rich, extensible REST API
StorageSource

(IStorageSourceService)

RestServer
(IRestApiService)

StaticFlowPusher
(IStaticFlowPusherService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

WoR ks 30

Floodlight Overview

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

LinkDiscovery
(ILinkDiscoveryService)

Forwarding

M

DeviceManager
(IDeviceService)

StorageSource
(IStorageSourceService)
RestServer
(IRestApiService)

StaticFlowPusher

(IStaticFlowPusherService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

Translates OF messages to Floodlight events
Managing connections to switches via Netty

Computes shortest path using Dijsktra
Keeps switch to cluster mappings

Maintains state of links in network
Sends out LLDPs

Installs flow mods for end-to-end routing

Handles island routing

Tracks hosts on the network
MAC -> switch,port, MAC->IP, IP->MAC

Implements via Restlets (restlet.org)

Modules export RestletRoutable

Supports the insertion and removal of static flows
REST-based API

Create layer 2 domain defined by MAC address

31

Floodlight Programming Model

IFloodlightModule

® Java module that runs as part of Floodlight

External
Application
® Consumes services and events exported by other modules

External Application

OpenFlow (ie. Packet-in)

Switch add / remove IFloodlight-
Device add /remove / move Module
Link discover .
! Floodlight Controller

SWItC h c Open Flow

® Communicates with Floodlight via REST / Switch
vSW|tch

comput
NET

WORKS

Switch

32

Floodlight Modules

Network State Static Flows Virtual Network User Extensions

List Hosts Add Flow Create Network
List Links Delete Flow Delete Network
List Switches List Flows Add Host
GetStats (DPID) RemoveAll Flows Remove Host

GetCounters
(OFType...)

Floodlight Controller

Switch

Switch /

vSwitch

computer,)
N E

W-0~R-}(\s 33

* If you know JAVA
* If you need production-level performance
* Have/want to use REST API

TABLE VI
CONTROLLERS CLASSIFICATION

Name Architecture Northbound API Consistency Faults License Prog. language Version
I Beacon [56] centralized multi-threaded ad-hoc API no no GPLv2 Java v1.0 I
DISCO [185] distributed REST —_— yes —_— Java vl.l
ElastiCon [224] distributed RESTful API ves no —_ Java v1.0
Fleet [200] distributed ad-hoc no no —_— —_ v1.0
Floodlight [159] centralized multi-threaded RESTiul API no no Apache Java vl.l
HP VAN SDN [184] distributed RESTful API weak yes —_— Java v1.0
HyperFlow [195] distributed _ weak yes —_ Ci+ v1.0
Kandoo [230] hierarchically distributed _ no no —_ C, C++, Python v1.0
Omix [7] distributed NVP NBAPI weak, strong ~ yes commercial Python, C v1.0
Maestro [155] centralized multi-threaded ad-hoc API no no LGPLv2.1 Java v1.0
Meridian [197] centralized multi-threaded extensible API layer no no —_— Java v1.0
MobileFlow [223] _ SDMN API _ —_ —_ —_ vl.2
MulL [231] centralized multi-threaded multi-level interface no no GPLv2 C v1.0
NOX [26] centralized ad-hoc API no no GPLv3 C++ v1.0
NOX-MT [157] centralized multi-threaded ad-hoc API no no GPLv3 C++ v1.0
NVP Controller [112] distributed _— —_— —_ commercial — —_—
OpenContrail [1%5] _ REST AFI no no Apache 2.0 Python, C++, Java v1.0
OpenDaylight [13] distributed REST, RESTCONF weak no EPL v1.0 Java vl {03}
ONOS [117] distributed RESTful API weak, strong yes —_ Java v1.0
PANE [197] distributed PANE AFI ves —_ —_ —_ —_
POX [2:37] centralized ad=hoc API no no GPLv3 Python v1.0
ProgrammableFlow [237] centralized —_— —_— —_ —_— C vl.3
Pratyaastha [19%] distributed —_— —_— _ - —_ —_—
Rosemary [194] centralized ad-hoe —_ —_ —_ —_ v1.0
Ryu NOS [191] centralized multi-threaded ad-hoc APT no no Apache 20 Python v1{023}
SMaRtLight [199] distributed RESTful API VES yes —_ Java v1.0
SNAC [234] centralized ad-hoc API no no GPL C++ v1.0
Trema [190] centralized multi-threaded ad-hoc API no no GPLv2 C, Ruby v1.0
Unified Controller [171] —_— REST AFI —_— _— commercial — v1.0
yane [196] distributed file system —_ _ —_ _ —_

36

How to scale the Controller?

e Obvious: add more controllers.

* BUT: how about the applications?

* Synchronization/concurrency problems.
* Who controls which switch?
* Who reacts to which events?

13 FW 13 FW 13 FW

Controller 1 Controller 2 Controller N

[0 0
Stats + Install OF entries

S @y B

WoR s 37

Berde, Pankaj, et al. "ONOS: towards an open, distributed SDN OS.”

HotSDN 2014

unnpuh-rr
E

sz
O
b}
P
7))

The ONOS Controller

/ Network Graph
Eventually consistent

TS &ﬂ Cassandra In-Memory

\
Titan Graph DB

DHT
Distributed Registry B
Strongly Consistent 1 Zoo kee pe r
. J
Instance 1 Instance 2 Instance 3

OpenFlow OpenFlow
Controller Controller

OpenFlow
Controller

.
.
N .
RS e
[N .
N .
.
\ — P
E /
é ’ :
D
D
A |

_:’>_ﬁ“

38

[J
comput
NET
WORKS

ONOS Scaling

Network Graph
Global network view é

4)

_

(. .
Distributed Instance 1 Instance 2 Instance 3
Network OS

_
Data plane

An instance is responsible for maintaining a part of network graph

Control capacity can grow with network size or application need

39

com
NET
WORKS

ONOS Control Plane Failover

Distributed Master Master Master
) Switch A = ONOS 2 Switch A = ONOS 2 Switch A = ONOS 2
Registry Candidates = ONOS 3 Candidates = ONOS 3 Candidates = ONOS 3
-
Distributed

. Network OS

Instance 1 Instance 2 Instance 3

-7

-
-
-
-
PR .-

=/

II ’/
-
/l o -
’ PRd _--
’ s _--
’ e P
’ - -
’ - _--
’ -7 _-"
/ -7 _-"
/ o7 -
J Lo
i
P
Host E?_g
». I |
%’ 0] =]

40

ut

WORKS

ONOS Network Graph

\

/ Network Graph
Eventually consistent

Titan Graph DB

TS &ﬂ Cassandra In-Memory

DHT
Distributed Registry B
Strongly Consistent ln Zookee per
_ y,

Instance 1 Instance 2 Instance 3
OpenFlow OpenFlow OpenFlow
Controller Controller Controller

N \‘\ ////’,
R ’— __’ é
Host

41

* Network state is naturally represented as a graph

* Graph has basic network objects like switch, port, device and links

e Application writes to this graph & programs the data plane

Example: Path Computation App on Network Graph

flow
Flow entry
inport
switch
port
switch on port
port
host
device

Flow path

flow
Flow entry
outport
switch
port
port on switch
port
host
device

* Application computes path by traversing source->destination

* Application writes each flow entry for the path

NET
WORKS

43

Network Graph: Switches

4)

- J

[Switch Manager] [Switch Manager] [Switch Managel]

\

Network Graph: Links

4)
)
.
_ /
r Link Discovery] Link Discovery] Link Discovery]
— : \ \

Network Graph: Devices

/‘ A
2 o

_

J

7

Device Manager] Device Manager] Device Manager]

\ \

SM][LD] SM][LD] SM] [LD]

N\,
\§

AN
(RN 1o
NN ! \
AN 1 \
N 1
.. PKTIN \
NN 1 \
\ | \

\ | PKTIN

PKTIN

Path Computation with Network Graph

[Path Computation] [Path Computation] [Path Computation]
Network Graph:

Flow Paths . . .
FIOW 1 | Flow entries FlOW 2 (| Flow entries FlOW 3 ~ ||| Flow entries
Flow 4 —{[Fiow entries Flow 5 i Fow entries Flow 6 | Fiow entries

=‘
Flow 7 | Flow entries Flow 8 | — Flow entries

® 7\

S .
_ ® Y,
:SM][L\I\D\][DM] [SM][LE/)\][DM] [SM][LD][DM]

N S~s ’ \ -7
~ ~ -
N ~o ’ N - ’
R ~o = - - 1
h E_E_E’ '
\\ !
’) - I
\ 1
\]
So \\ 1
N 1
~ \
A N]
A ’ \
\
- -
(,()I'II[E I-rf

Network Graph and Flow Manager

Network PC

PC

PC

Graph: Flows !
Flow1l [Flow entries

Flow 2 | Flow entries

Flow 4 (—

Flow entries

Flow 3 ||| Flow entries \

—————————1

Flow5 |— Flow entries

Flow7 | Flow entries

O\

Flow 6 — Flow entries

Flow 8

[M———————1

b

L

Flow entries

ry

%

[Flow Manager]rlowmod [Flow Manager]

EEe

~
N ~e
N ~
N S
N ~
N
~
N
N

comput
NET
WO R Ks

[Sl\/l] [LD][DM]

’
’
/
’
L | /
’
\ ’
N \ /
\ ’
AN \ ’
N \ /
N \
N
N
A

Flowmod

[Flow Manager] Flowmod

Qmle

49

50

com put
NET
WORKS

ONOS and Consistency

/ Network Graph
Eventually consistent

Titan Graph DB

TS &ﬂ Cassandra In-Memory
DHT

Distributed Registry B
Strongly Consistent ln 7200 kee per

.

\

J

Instance 1 Instance 2 Instance 3

OpenFlow OpenFlow OpenFlow
Controller Controller Controller
E— — ,///
— 7 7 ks

51

Consistency Definition

Strong Consistency: Upon an update to the network state
by an instance, all subsequent reads by any instance

returns the last updated value.

Strong consistency adds complexity and latency to

distributed data management.

Eventual consistency is slight relaxation — allowing readers

to be behind for a short period of time.

52

Strong Consistency using Registry

Network Graph gj.tzj?

Gistributed Instance 1 Instance 2 Instance 3
Network OS
Switch'A
: Switch A Switch A
\RegIStry Master = ONOS 1 Master = ONOS Master = ONOS 1
€ >
<€ > . € >
All instances _ Instance 1 Switch A Master = ONOS 1
Switch A Master = NONE : All instances . Instance 2 Switch A Master = ONOS 1
- Switch A Master = . Instance 3 Switch A Master = ONOS 1

7 NONE

Timeline / May of Locking &

Master elected for switch A C@SBHSUS
COlegﬂﬁ-r

WORKS

53

Why Strong Consistency is needed for Master Election

 Weaker consistency might mean Master election on

instance 1 will not be available on other instances.

e (Can lead to having multiple masters for a switch.

54
WORKS

Eventual Consistency in Network Graph

Network Graph @@J@%

b

istributed Instance 1 Instance 2 Instance 3 \
Network OS
> > <€ >¢
All instances Instance 1 Switch A=ACTIVE 1 pjjinstances
Switch A STATE = INACTIVE Instance 2 Switch A = INACTIVE Switch A STATE = ACTIVE

' Instance 3 Switch A = INACTIVE |

Timeline

Delay of Eventual

Switch Connected to ONOS
Consensus

comput
NET
WORKS

Cost of Eventual Consistency

* Short delay will mean the switch A state is not
ACTIVE on some ONOQOS instances in previous

example.

* Applications on one instance will compute flow
through the switch A while other instances will not

use the switch A for path computation.

WORKS

56

Is Eventual Consistency good enough?

* Physical network state changes asynchronously
* Strong consistency across data and control plane is too hard

* Control apps know how to deal with eventual consistency

* In the current distributed control plane, each router makes its
own decision based on old info from other parts of the network

and it works fine

WORKS

57

((Klméns‘-r

WORKS

Other Controllers...

TABLE VI
CONTROLLERS CLASSIFICATION

Name Architecture Northbound API Consistency Faults License Prog. language Version
Beacon | 1 centralized multi-threaded ad-hoc AFI no no GPLv2 Java v1.0

| DISCO [155] distributed REST — yes — Java vl.1 |
ElastiCon [22Y] distributed RESTful API ves no — Java v1.0
Fleet [200] distributed ad-hoc no no —_— _— v1.0
Floodlight [1 centralized mult-threaded RESTiul API no no Apache Java vl.l
HP VAN SDN distributed RESTful API weak VEs —_ Java \-'I£ I
HyperFlow [195] distributed _ weak yes —_ C++ v1.0
Kandoo [230] hierarchically distributed —_ no no — C, C++, Python v1.0

Iﬁx [7] distributed NVP NBA_P] weak, strong __ves com&ciul P\fﬂﬂi C \=I£ I
Maestro [155] centralized multi-threaded ad-hoc API no no LGPLv2.1 Java v1.0
Meridian [197] centralized multi-threaded extensible API layer mno no —_— Java v1.0
MobileFlow [223] _ SDMN API —_ —_ —_ —_ vl.2
MulL [231] centralized multi-threaded multi-level interface no no GPLw2 C v1.0
NOX [20] centralized ad=hoc API no no GPLv3 C++ v1.0
MNOX-MT [157] centralized multi-threaded ad-hoc AFI no no GPLv3 C++ v1.0
NVP Controller [112] distributed —_— —_— —_— commercial = — —_—
Dpcnw] [183] —_ REST AFPI no no Apache 2.0 Python, C4+, Java v1.0

I OpenDavlight [| 3] distributed REST. RESTCONF weak no EPL v1.0 Java v1.{0.3}
ONOS [117] distributed RESTful API weak, strong yes — Java v1.0
PANE [197] distributed PANE AFI ves —_ —_ —_ —_
POX [2:37] centralized ad=hoc API no no GPLv3 Python v1.0
ProgrammableFlow [233] centralized —_— —_— —_— —_— C vl.3
Pratyaastha [19%] distributed —_— —_— —_— —_— _— —_—
Rosemary [| centralized ad-hoc — — — —_ v1.0
Ryu NOS [191] centralized multi-threaded ad-hoc API no no Apache 2.0 Python vl.{023}
SMaRtLight [199] distributed RESTful API VES yes —_ Java v1.0
SNAC [234] centralized ad-hoc API no no GPL C++ v1.0
Trema [] centralized multi-threaded ad-hoc API no no GPLw2 C, Ruby v1.0
Unified Controller [171] —_— REST AFI —_— —_— commercial — v1.0
yane [196] distributed file system —_ —_ —_ _ —_

58

Kreutz, Diego, et al. "Software-defined networking: A comprehensive

survey."Proceedings of the IEEE 103.1 (2015): 14-76.

(:()mpEuHTr
W 0 R Ks

=

Controller Popularity

TABLE VI
CONTROLLERS CLASSIFICATION

_Name Architecture onsistency Faults License Prog. lansuage Version
Beacon [56] centralized multi-threaded ad-hoc API no no GPLv2 Java v1.0
DISCO [155] distributed REST —_ yes —_ Tava vl.1l
ElastiCon [22Y] distributed RESTful API Ves no — Java v1.0
Fleet [200] distributed ad-hoc no no —_ —_— vl.0
Floodlighe [159] centralized multi-threaded RESTful API no no Apache Java vl.l
HEF VAN SDIN [T5=] distrbuted KESTTul AP Wedk yes —_— Java vl
HyperFlow [195] distributed —_ weak yes —_ C++ v1.0
Kandoo [23(0] hierarchically distributed —_ no no —_ C, C++, Python v1.0
Omix [7] distributed NVF NBAFPI weak, strong yes commercial ~ Python, C v1.0
Maestro [58] centralized multi-threaded ad-hoc API no no LGPLv2.1 Tava v1.0
Mendian [[92] centralized multi-threaded extensible API layer no no —_ Java v1.0
MobileFlow [227] _— SDMN API —_ —_ _— _— vl.2
MuL [231] centralized multi-threaded multi-level interface no no GPLv2 C v1.0
NOX [26] centralized ad=hoc AFPI no no GPLv3 C++ v1.0
NOX-MT [157] centralized multi-threaded ad-hoc API no no GPLv3 C++ v1.0
NVP Controller [112] distributed — — — commercial e —
OoenConteail [122] . BREST AP jilsl 0o Apache 20 Python Cat Java 1.0
OpenDaylight [| 3] distributed REST, RESTCONF weak no EPL v1.0 Java v1.{0.3}
ONOS [117] distributed RESTful API weak, strong yes —_ Java v1.0
TAANE [0] disriputed TAANE ADT vEs — — —_— —

POX [737] centralized ad-hoc API no no GPLv3 Python v1.0

ProgrammableFlow [centralized _ —_ —_ —_ C vl.3

Pratyaastha [195] distributed —_— —_ —_ —_ —_— —_

Rosemary [[94] centralized ad-hoc —_ —_ —_ —_— v1.0

Ryu NOS [191] centralized multi-threaded ad-hoc API no no Apache 2.0 Python v1.{0.2.3}

SMaRtLighe [19Y] distributed RESTful API ves yes —_ Java v1.0

SMNAC [234] centralized ad=hoc AFPI no no GPL C++ v1.0

Trema [] centralized multi-threaded ad-hoc API no no GPLv2 C. Ruby v1.0

Unified Controller [171] — REST APFI — — commercial e v1.0

wvane [190] distributed file system —_ —_ —_ _ —_ 59

