
SOFTWARE-DEFINED NETWORKING

SESSION IV

Introduction to Software-defined Networking

Block Course – Winter 2015/16

David Koll

1

This Lecture

2

SDN Controllers

•SDN promises to facilitate network management and ease
the burden of solving networking problems

•Main means: the logically-centralized control offered by a
network controller (or network operating system (NOS))

•Crucial value of a controller is to provide abstractions,
essential services, and common application programming
interfaces (APIs) to developers.

3

Controller interact both northbound and southbound!

4

SDN Controllers

5

Centralized Controllers

•Single entity that manages all forwarding devices of the
network.

•Single point of failure and may have scaling limitations.
• May not be enough to manage a network with a large number of

data plane elements.

6

Centralized Controllers - Examples

•NOX/POX, Beacon, Floodlight, …

•NOX-MT, Beacon and Floodlight: designed as highly
concurrent systems
• Goal: achieve throughput required by enterprises and data centers.
• Beacon can deal with more than 12 million flows per second by

using large size computing.

•Other centralized controllers such as Trema or Ryu target
specific environments (e.g., carrier networks)

7

Distributed Controllers

•A distributed controller can be a centralized cluster of
nodes…
• high throughput for very dense data centers

•…or a physically distributed set of elements
• more resilient to different kinds of logical and physical failures.

•Multiple data centers interconnected by a wide area
network
• Hybrid approach: clusters of controllers inside each data center and

distributed controller nodes in the different sites

8

Distributed Controllers

•Consistency semantics: weak or strong

• Weak: data updates on distinct nodes will eventually be updated on
all controller nodes.
• implies that there is a period of time in which distinct nodes may read

different values (old value or new value) for the same property.

• Strong: all controller nodes will read the most updated property
value after a write operation.
• Impact on system performance
• Offers a simpler interface to application developers.

•Failure recovery

9

Distributed Controllers - Examples

•Onix, HyperFlow, HP VAN SDN, ONOS, DISCO, Fleet…

• Most offer weak consistency semantics
• Only Onix and ONOS provide (close to) strong consistency

• Some controllers tolerating crash failures
• But: Controllers do not tolerate arbitrary failures

• Any node with an abnormal behavior will not be replaced by a
potentially well behaved one

10

Physical Network Infrastructure

Distributed Controllers - Operation

Distributed Control Plane

• Single point of failure
• Performance bottleneck

11

Spatial Partitioning

Overload

12

Growing the Control Plane

13

Shrinking the Control Plane

14

Goals

•Build a distributed control plane which
•Load balances
•Grows
•Shrinks

•Requires
•Load estimation at controllers
•Switch migration protocol
•Consistency protocols

15

16

K
re

u
tz

, D
ie

go
, e

t
al

. "
So

ft
w

ar
e-

d
ef

in
ed

 n
et

w
o

rk
in

g:
 A

 c
o

m
p

re
h

en
si

ve

su
rv

ey
."

P
ro

ce
ed

in
g

s
o

f
th

e
IE

EE
1

0
3

.1
 (

2
0

1
5

):
 1

4
-7

6
.

SDN Controllers

Controller Architectures

17

Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey."Proceedings of the IEEE 103.1 (2015): 14-76.

That‘s a lot of Choices!?

Which controller should I use for what problem?

„There are almost as many controllers for SDNs as
there are SDNs“ – Nick Feamster

18

Which controller?

Concept?

Architecture?

Programming language and model?

Advantages / Disadvantages?

Learning Curve?

Developing Community?

Type of target network?

19

CENTRALIZED CONTROLLERS

20

NOX

• The first controller
• Open source
• Stable

• NOX-Classic: C++/Python

• „New“ NOX: C++ only
• OF version supported: 1.0

21

NOX Architecture

switches and

attached servers

Controller

maintains a

network view

OpenFlow is

used to control

switches

Granularity of

Control: Per

Flow

22

NOX Architecture

Programming model: Controller listens for OF
events

Programmer writes action handlers for events

23

When to use NOX

•Need to use low-level semantics of OpenFlow
• NOX does not come with many abstractions

•Need of good performance (C++)
• E.g.: production networks

24

POX

•POX = NOX in Python

•Advantages:
• Widely used, maintained and supported
• Relatively easy to write code for

•Disadvantage:
• Performance (Python is slower than C++)
• But: can feed POX ideas back to NOX for production use

25

POX

0 20.000 40.000 60.000

NOX-C++

NOX-Python

POX

cbench "throughput" (flows per
second)

0 40.000 80.000

NOX-C++

NOX-Python

POX

cbench “latency” (flows per second)

26

When to use POX

• Learning, testing, debugging, evaluation

In this class :)

•Probably not in large production networks

27

More advanced: Floodlight

• Java

•Advantages:
• Documentation,
• REST API conformity
• Production-level performance

•Disadvantage:
• Steep learning curve

28

Floodlight: Users

Floodlight Adopters:

• University research

• Networking vendors

• Users

• Developers / startups

29

Floodlight Overview

• Floodlight is a collection of modules

• Some modules (not all) export
services

• All modules in Java

• Rich, extensible REST API

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

30

Floodlight Overview

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

 Installs flow mods for end-to-end routing

 Handles island routing

 Tracks hosts on the network

 MAC -> switch,port, MAC->IP, IP->MAC

 Implements via Restlets (restlet.org)

 Modules export RestletRoutable

 Supports the insertion and removal of static flows

 REST-based API

 Maintains state of links in network

 Sends out LLDPs

 Create layer 2 domain defined by MAC address

 Translates OF messages to Floodlight events

 Managing connections to switches via Netty

31

 Computes shortest path using Dijsktra

 Keeps switch to cluster mappings

Floodlight Programming Model

Switch

Switch

vSwitch

IFloodlight-
Module

External
Application

IFloodlightModule

 Java module that runs as part of Floodlight

 Consumes services and events exported by other modules

 OpenFlow (ie. Packet-in)

 Switch add / remove

 Device add /remove / move

 Link discovery

External Application

 Communicates with Floodlight via REST

Floodlight Controller

Switch

32

Floodlight Modules

Network State

List Hosts

List Links

List Switches

GetStats (DPID)

GetCounters
(OFType…)

Static Flows

Add Flow

Delete Flow

List Flows

RemoveAll Flows

Virtual Network

Create Network

Delete Network

Add Host

Remove Host

User Extensions

…

Floodlight Controller

Switch

Switch

vSwitch

Switch

33

When to use Floodlight

• If you know JAVA

• If you need production-level performance

• Have/want to use REST API

34

Other Controllers…

35

DISTRIBUTED CONTROLLERS

36

How to scale the Controller?

•Obvious: add more controllers.

•BUT: how about the applications?
• Synchronization/concurrency problems.

• Who controls which switch?

• Who reacts to which events?

Controller 1

L3 FW

Controller 2

L3 FW

Controller N

L3 FW

Stats + Install OF entries

37

The ONOS Controller

Host

Host

Host

Titan Graph DB

Cassandra In-Memory
DHT

Instance 1 Instance 2 Instance 3

Network Graph
Eventually consistent

Distributed Registry
Strongly Consistent Zookeeper

OpenFlow

Controller

OpenFlow

Controller

OpenFlow

Controller

38

B
er

d
e,

 P
an

ka
j,

et
 a

l.
"O

N
O

S:
 t

o
w

ar
d

s
an

 o
p

en
, d

is
tr

ib
u

te
d

 S
D

N
 O

S.
“

H
o

tS
D

N
2

0
1

4

ONOS Scaling

Distributed
Network OS

Instance 2 Instance 3Instance 1

Network Graph
Global network view

Data plane

• An instance is responsible for maintaining a part of network graph

• Control capacity can grow with network size or application need

39

Master
Switch A = ONOS 1

Candidates = ONOS 2,
ONOS 3

Master
Switch A = ONOS 1

Candidates = ONOS 2,
ONOS 3

Master
Switch A = ONOS 1

Candidates = ONOS 2,
ONOS 3

ONOS Control Plane Failover

Distributed
Network OS

Instance 2 Instance 3Instance 1

Distributed
Registry

Host

Host

Host

A

B

C

D

E

F

Master
Switch A = NONE

Candidates = ONOS 2,
ONOS 3

Master
Switch A = NONE

Candidates = ONOS 2,
ONOS 3

Master
Switch A = NONE

Candidates = ONOS 2,
ONOS 3

Master
Switch A = ONOS 2

Candidates = ONOS 3

Master
Switch A = ONOS 2

Candidates = ONOS 3

Master
Switch A = ONOS 2

Candidates = ONOS 3

40

ONOS Network Graph

Host

Host

Host

Titan Graph DB

Cassandra In-Memory
DHT

Instance 1 Instance 2 Instance 3

Network Graph
Eventually consistent

Distributed Registry
Strongly Consistent Zookeeper

OpenFlow

Controller

OpenFlow

Controller

OpenFlow

Controller

41

ONOS Network Graph

port

switch port

device

port

on

port

port

port

link
switch

on

device

host host

• Network state is naturally represented as a graph

• Graph has basic network objects like switch, port, device and links

• Application writes to this graph & programs the data plane

42

Example: Path Computation App on Network Graph

port

switch port

device

Flow path
Flow entry

port

on

port

port

port

link
switch

inport

on

Flow entry

device

outport
switchswitch

host host

flowflow

• Application computes path by traversing source->destination

• Application writes each flow entry for the path

43

Switch Manager Switch ManagerSwitch Manager

Network Graph: Switches

OF
OF

OF
OF

OF
OF

Network Graph and Switches

45

SM

Network Graph: Links

SM SM

Link Discovery Link Discovery Link Discovery

LLDP LLDP

Network Graph and Link Discovery

46

Network Graph: Devices

SM SM SMLD LD LD

Device Manager Device Manager Device Manager

PKTIN

PKTIN

PKTIN

Host

Host

Host

Devices and Network Graph

47

SM SM SMLD LD LD

Host

Host

Host

DM DM DM

Path Computation Path Computation Path Computation
Network Graph:
Flow Paths

Flow 1

Flow 4

Flow 7

Flow 2

Flow 5

Flow 3

Flow 6

Flow 8

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Path Computation with Network Graph

48

SM SM SMLD LD LD

Host

Host

Host

DM DM DM

Flow Manager

Network
Graph: Flows

PC PC PC

Flow Manager Flow ManagerFlowmod Flowmod

Flowmod

Flow 1

Flow 4

Flow 7

Flow 2

Flow 5

Flow 3

Flow 6

Flow 8

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Flow entriesFlow entriesFlow entries

Network Graph and Flow Manager

49

CONSISTENCY

50

ONOS and Consistency

Host

Host

Host

Titan Graph DB

Cassandra In-Memory
DHT

Instance 1 Instance 2 Instance 3

Network Graph
Eventually consistent

Distributed Registry
Strongly Consistent Zookeeper

OpenFlow

Controller

OpenFlow

Controller

OpenFlow

Controller

51

Consistency Definition

• Strong Consistency: Upon an update to the network state

by an instance, all subsequent reads by any instance

returns the last updated value.

• Strong consistency adds complexity and latency to

distributed data management.

• Eventual consistency is slight relaxation – allowing readers

to be behind for a short period of time.

52

Strong Consistency using Registry

Distributed
Network OS

Instance 2 Instance 3

Network Graph

Instance 1

A =
Switch A

Master = NONE
A = ONOS 1

Timeline

All instances

Switch A Master = NONE

Instance 1 Switch A Master = ONOS 1

Instance 2 Switch A Master = ONOS 1

Instance 3 Switch A Master = ONOS 1

Master elected for switch A

Registry Switch A
Master = NONE

Switch A
Master = ONOS 1

Switch A
Master = ONOS

1

Switch A
Master = NONE

Switch A
Master = ONOS 1

Delay of Locking &

Consensus

All instances

Switch A Master =

NONE

53

Why Strong Consistency is needed for Master Election

• Weaker consistency might mean Master election on

instance 1 will not be available on other instances.

• Can lead to having multiple masters for a switch.

54

Eventual Consistency in Network Graph

Distributed
Network OS

Instance 2 Instance 3

Network Graph

Instance 1

SWITCH A
STATE= INACTIVE

Switch A
State = INACTIVE

Switch A
STATE = INACTIVE

All instances
Switch A STATE = ACTIVE

Instance 1 Switch A = ACTIVE
Instance 2 Switch A = INACTIVE
Instance 3 Switch A = INACTIVE

DHT

Switch Connected to ONOS

Switch A
State = ACTIVE

Switch A
State = ACTIVE

Switch A
STATE = ACTIVE

Timeline

All instances
Switch A STATE = INACTIVE

Delay of Eventual
Consensus

55

Cost of Eventual Consistency

•Short delay will mean the switch A state is not

ACTIVE on some ONOS instances in previous

example.

•Applications on one instance will compute flow

through the switch A while other instances will not

use the switch A for path computation.

56

Is Eventual Consistency good enough?

• Physical network state changes asynchronously

• Strong consistency across data and control plane is too hard

• Control apps know how to deal with eventual consistency

• In the current distributed control plane, each router makes its

own decision based on old info from other parts of the network

and it works fine

57

Other Controllers…

58

59

K
re

u
tz

, D
ie

go
, e

t
al

. "
So

ft
w

ar
e-

d
ef

in
ed

 n
et

w
o

rk
in

g:
 A

 c
o

m
p

re
h

en
si

ve

su
rv

ey
."

P
ro

ce
ed

in
g

s
o

f
th

e
IE

EE
1

0
3

.1
 (

2
0

1
5

):
 1

4
-7

6
.

Controller Popularity

