
SOFTWARE -DEFINED NETWORKING

SESSION IV

Introduction to Software-definedNetworking

Block Course ïWinter 2015/16

David Koll

1

This Lecture

2

SDN Controllers

ÅSDN promises to facilitate network management and ease
the burden of solving networking problems

ÅMain means: the logically-centralized control offered by a
network controller (or network operating system (NOS))

ÅCrucial value of a controller is to provide abstractions,
essential services, and common application programming
interfaces (APIs) to developers.

3

Controller interact both northbound and southbound!

4

SDN Controllers

5

CentralizedControllers

ÅSingle entity that manages all forwarding devices of the
network.

ÅSingle point of failure and may have scaling limitations.
ÅMay not be enough to manage a network with a large number of

data plane elements.

6

CentralizedControllers - Examples

Åbh·κth·Σ .ŜŀŎƻƴΣ CƭƻƻŘƭƛƎƘǘΣ Χ

ÅNOX-MT, Beacon and Floodlight: designed as highly
concurrent systems
ÅGoal: achieve throughput required by enterprises and data centers.
ÅBeacon can deal with more than 12 million flows per second by

using large size computing.

ÅOther centralized controllers such as Tremaor Ryutarget
specific environments (e.g., carrier networks)

7

Distributed Controllers

ÅA distributed controller can be a centralized cluster of
ƴƻŘŜǎΧ
Åhigh throughput for very dense data centers

ÅΧƻǊ a physically distributed set of elements
Åmore resilient to different kinds of logical and physical failures.

ÅMultiple data centers interconnected by a wide area
network
ÅHybrid approach: clusters of controllers inside each data center and

distributed controller nodes in the different sites

8

Distributed Controllers

ÅConsistency semantics: weak or strong

ÅWeak: data updates on distinct nodes will eventually be updated on
all controller nodes.
Åimplies that there is a period of time in which distinct nodes may read

different values (old value or new value) for the same property.

ÅStrong: all controller nodes will read the most updated property
value after a write operation.
ÅImpact on system performance
ÅOffers a simpler interface to application developers.

ÅFailure recovery

9

Distributed Controllers - Examples

ÅOnix, HyperFlow, HP VAN {5bΣ hbh{Σ 5L{/hΣ CƭŜŜǘΧ

ÅMost offer weak consistency semantics
ÅOnly Onixand ONOS provide (close to) strong consistency

ÅSome controllers tolerating crash failures
ÅBut: Controllers do not tolerate arbitrary failures
ÅAny node with an abnormal behavior will not be replaced by a

potentially well behaved one

10

Physical Network Infrastructure

Distributed Controllers - Operation

Distributed Control Plane

ÅSingle point of failure
ÅPerformance bottleneck

11

Spatial Partitioning

Overload

12

Growing the Control Plane

13

Shrinking the Control Plane

14

Goals

ÅBuild a distributed control plane which
ÅLoad balances
ÅGrows
ÅShrinks

ÅRequires
ÅLoad estimation at controllers
ÅSwitch migration protocol
ÅConsistency protocols

15

16

K
re

u
tz

,
D

ie
g
o
,
e
t
a

l.
"S

o
ft

w
a

re
-d

e
fi
n
e

d
 n

e
tw

o
rk

in
g

:
A

 c
o

m
p
re

h
e

n
si

ve

su
rv

e
y.

"P
ro

ce
e

d
in

g
so

f
th

e
 I
E

E
E1

0
3

.1
 (

2
0
1

5
):

 1
4-7

6
.

SDN Controllers

Controller Architectures

17

Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey."Proceedingsof the IEEE103.1 (2015): 14-76.

¢ƘŀǘΨǎa lot of Choices!?

Whichcontroller shouldI usefor what problem?

αThereare almostasmanycontrollersfor SDNs as
there are{5bǎά ςNick Feamster

18

Whichcontroller?

Concept?

Architecture?

Programminglanguageandmodel?

Advantages / Disadvantages?

Learning Curve?

DevelopingCommunity?

Type of targetnetwork?

19

CENTRALIZEDCONTROLLERS

20

NOX

ÅThe first controller
ÅOpen source
ÅStable

ÅNOX-Classic: C++/Python

ÅαbŜǿά bh·Υ /ҌҌ only
ÅOF versionsupported: 1.0

21

NOX Architecture

switchesand

attachedservers

Controller

maintains a

network view

OpenFlow is

usedto control

switches

Granularity of

Control: Per

Flow

22

NOX Architecture

Programmingmodel: Controller listensfor OF
events

Programmerwrites action handlersfor events

23

Whento useNOX

ÅNeed to uselow-level semanticsof OpenFlow
ÅNOX doesnot comewith manyabstractions

ÅNeed of goodperformance(C++)
ÅE.g.: productionnetworks

24

POX

ÅPOX = NOX in Python

ÅAdvantages:
ÅWidelyused, maintainedandsupported
ÅRelativelyeasy to write codefor

ÅDisadvantage:
ÅPerformance (Python isslowerthan C++)
ÅBut: canfeedPOX ideasback to NOX for productionuse

25

POX

0 20.000 40.000 60.000

NOX-C++

NOX-Python

POX

cbench"throughput" (flows per
second)

0 40.000 80.000

NOX-C++

NOX-Python

POX

cbenchάƭŀǘŜƴŎȅέ όŦƭƻǿǎ ǇŜǊ ǎŜŎƻƴŘύ

26

Whento usePOX

ÅLearning, testing, debugging, evaluation

In this class:)

ÅProbablynot in large productionnetworks

27

More advanced: Floodlight

ÅJava

ÅAdvantages:
ÅDocumentation,
ÅREST API conformity
ÅProduction-level performance

ÅDisadvantage:
ÅSteeplearningcurve

28

Floodlight: Users

Floodlight Adopters:

Å University research

Å Networking vendors

Å Users

Å Developers / startups

29

