
Outline of Wireless Block
• Game theory and its applications
– Game theory basics and concepts
– Distributed Spectrum Sharing Application
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• Social Group Maximization Framework
– Introduction to the framework
– Wireless Network Applications

• Mobile Data Offloading
– Mobile cloud computing
– Mobile media prefetching



Distributed Computation Offloading 
for Mobile Cloud Computing



Growing Mobile Devices
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• Growing mobile devices
○ 526 million mobile devices and 

connections were added in 2013 
(Cisco, Feb 2014)

○ Global mobile data traffic reached 
1.5x1018 Bytes/Month at the end of 
2013 (Cisco, Feb 2014)

• Limited Mobile Resource
○ Due to physical size constraint
○ Limited computation capability &

limited battery capacity
○ Difficult to support resource-hungry 

apps, e.g., face recognition, 
augmented reality



Mobile Cloud Computing
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• Mobile Cloud Computing (MCC)
○ Augment capability of mobile 

devices by offloading computation 
to cloud via wireless access

○ Leverage resource-rich cloud 
infrastructure

○ Reduce computing time & save 
energy

• Wireless Access Efficiency
○ A critical factor for MCC
○ Mobile users are coupling
○ Simultaneous computation 

offloading  low wireless 
access efficiency

Game theoretic approach for interactive 
computation offloading decision making 



System Model
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• Mobile Cloud Computing System
o A set of mobile device users ܰ with computation intensive tasks
o Computation offloading to cloud via a wireless access base-station,    

e.g., in a macrocell/ femtocell in cellular networks
o Both communication and computation aspects play a key role

Base-stationMobile Devices Cloud



Communication Model
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• Mobile user n has computation offloading decision                 
i.e., to offload or not to offload        

• Uplink data rate for computation offloading of user n:

o ࢇ = (ܽଵ, … , ܽே) computation offloading decision profile of all users
o ܹ channel bandwidth 
o ௡ܲ  transmission power of user n
o ௡,௦ܪ  channel gain between user n and base-station s
o ߱௡  background interference

ܽ௡ ∈ {0,1}

ܴ௡ ࢇ =  ܹ logଶ(1 + ௉೙ு೙,ೞ
ఠ೙ା∑ ௉೘ு೘,ೞ೘ಯ೙:ೌ೙సభ

)



     ܶ݅݉݁: ௡ܶ
௖  = ஻೙

ோ೙ ࢇ
+ ஽೙

ி೙
೎

Computation Model
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• Mobile user n has a computation task
○ ௡ܤ computation input data size, e.g., program codes and input states
○ ௡ܦ CPU cycles to accomplish the computation task

• Local computing approach (         ):

:ݕ݃ݎ݁݊ܧ ௡ܧ
௟  = ௡ܦ௡ݒ

o ௡ܨ
௟ CPU cycles per second of user n’s mobile device

o ௡ݒ energy consumption per CPU cycle

 (௡ܦ,௡ܤ)=௡ܫ

• Cloud computing approach (         ):

:ݕ݃ݎ݁݊ܧ ௡ܧ
௖  = ௡ܲ

஻೙
ோ೙ ࢇ

o ௡ܨ
௖ CPU cycles per second allocated to user n by cloud

o Time overhead = offloading + computing

     ܶ݅݉݁: ௡ܶ
௟  = ஽೙

ி೙
೗

ܽ௡=0

ܽ௡=1



Computation Offloading
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• Wireless access efficiency is bottleneck 
o Too many mobile users choose computation offloading simultaneously
 severe interference occurs
 lead to low data rate for computation offloading
 long transmission time and high energy consumption

• Computation offloading decision makings for mobile users
o Users are coupling, “to offload or not” depends on other users’ 

decisions
o Centralized optimization is challenging
 Combinatorial optimization and often NP-hard
 Need complete information, leading to high overhead for 

information exchange



• Game formulation
o Player set: mobile user set
o Strategy space: computation offloading decision
o Cost function:

௡ߛ
௧ = 1, ௡ߛ

௘ = 0  user n wants to reduce delay
௡ߛ

௧ = 0, ௡ߛ
௘ = 1  user n wants to save energy

௡ܸ(ࢇ) = ௡ߛ
௧ܶ݅݉݁ + ௡ߛ

௘ݕ݃ݎ݁݊ܧ

Distributed Computation Offloading Game
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• Motivations
○ Mobile devices are owned by different individuals and they may pursue 

different interests
○ Leverage the power of crowds for devising distributed algorithm with low 

complexity

ܽ௡ ∈ {0,1}

• Nash equilibrium ࢇ ∗ = ࢔ܽ
∗ , ࢔ିܽ

∗ satisfies that 

o Stable system state, no user has incentive to deviate
࢔ܽ

∗ = ௔೙∈{0,1}݊݅݉݃ݎܽ ௡ܸ(ܽ࢔
∗ , ࢔ିܽ

∗ ),∀݊ ∈ ܰ



Distributed Computation Offloading Game
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• Existence of Nash equilibrium

THEOREM: The distributed computation offloading game for mobile 
cloud computing admits a Nash equilibrium. 

• Structural property

○ Any asynchronous better response update process (i.e., no more than one 
player updates the strategy at any given time) must be finite and leads to 
a Nash equilibrium

THEOREM: The distributed computation offloading game for mobile 
cloud computing possesses the finite improvement property. 



Distributed Computation Offloading Algorithm
• Distributed algorithm for computation offloading decision making

o Motivation: enable mobile users to achieve a mutually satisfactory 
decision making, prior to the computation task execution

o Key idea: based on the finite improvement property, i.e., let one mobile 
user improve its computation offloading decision at a time
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Distributed Computation Offloading Algorithm
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• Slotted structure for decision update  using clock signal from base-station 
for synchronization



Distributed Computation Offloading Algorithm

13

• The following operations are carried out during a decision slot:
o Wireless interference measurement: each user locally measures the 

received interference generated by other users
o User choosing computation offloading will transmit some pilot signal 



Distributed Computation Offloading Algorithm
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• The following operations are carried out during a decision slot:
o Wireless interference measurement: each user locally measures the 

received interference generated by other users
o User choosing computation offloading will transmit some pilot signal 

o Decision update contention: based on the interference measurement, 
each user can check whether it can improve by changing its decision:
o If yes, content for decision update by informing the cloud with RTU 

(request-to-update) message
o If no, do not content and keep the same decision in next slot



Distributed Computation Offloading Algorithm
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• The following operations are carried out during a decision slot:
o Wireless interference measurement: each user locally measures the 

received interference generated by other users
o User choosing computation offloading will transmit some pilot signal 

o Decision update contention: based on the interference measurement, 
each user can check whether it can improve by changing its decision:
o If yes, content for decision update by informing the cloud with RTU 

(request-to-update) message
o If no, do not content and keep the same decision in next slot

o Decision update scheduling: the cloud randomly selects one update 
requesting user and send the update-permission (UP) message to the user 
for updating its decision for the next slot



Distributed Computation Offloading Algorithm

16

• The following operations are carried out during a decision slot:
o Wireless interference measurement: each user locally measures the 

received interference generated by other users
o User choosing computation offloading will transmit some pilot signal 

o Decision update contention: based on the interference measurement, 
each user can check whether it can improve by changing its decision:
o If yes, content for decision update by informing the cloud with RTU 

(request-to-update) message
o If no, do not content and keep the same decision in next slot

o Decision update scheduling: the cloud randomly selects one update 
requesting user and send the update-permission (UP) message to the user 
for updating its decision for the next slot

o When no RTU messages are received, the cloud will broadcast the END
message

o User will execute local/cloud computing according to achieved decisions at 
last slot (i.e., Nash equilibrium)



Numerical Results
• Mobile users randomly scatter over a square area 100mX100m
• Channel gain of a user depends on the distance from base-station
• Users have different computing tasks (e.g., face recognition) and different 

demands (delay reduction/energy saving)
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Numerical Results
• System-wide computing cost
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• Up-to 33% and 38% cost reduction over local/cloud computing by all users, 
respectively

• At most 10% performance loss, compared with centralized optimum



Socially-Driven Learning-Based 
Mobile Media Prefetching
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Background and Motivation:
Waiting or Latency in Real-Life Media Usage

YouTube- Audios YouTube-Videos

Twitter-Snapshots Google Picasa-Pictures

We are suffering from media access latency everyday
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YouTube- Audios YouTube-Videos

Twitter-Snapshots

This would be an emergency QoE issue 
particularly in the mobile environment 

(e.g., taking subline, bus, etc).

Let us consider the Twitter media
access case.

21

Background and Motivation:
Waiting or Latency in Real-Life Media Usage



Potential Solutions:
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1) CDN-based accelerate approach

2) Prefetching, e.g.,
1) IMP (MobiSys 2012)

• High prediction demands
2) EarlyBird (MobiHoc 2015)

• Content-based solution



Prefetching: Promising but Challenging
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Traditional approach:
Combine content-based analysis and machine learning/data mining

based solutions.

Challenging:
What to prefetch? (content selection is too hard!)
When to prefetch? (how to schedule the mechanism?)
How to prefetch? (in which mobile environment?)

Nolvety:
It is straightforward to rethink the possibility whether what you want

to see also strongly depends on whom published or shared it?

Question: We want to use socially-driven prefetching, is that possible?



Early Stage Measurements:
Usage Statistics Selection
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Table 1. Data collection from Twidere Android app on Google Play



Early Stage Measurements:
Dataset Description

• Duration: March 2015 to June 2015.
• Demographical Composition: More than 20,000 users around the 

world.
• Data Size: more than 233 million tweets, among which 9.2 millions 

are clicked and 72% of the clicked tweets contain media file.

Asia: 9,000

Europe: 5,000

US: 6,000
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Observations and Insights from Measurements
Mobile media object ranking
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Observation 1: We observe a strong power law phenomenon, i.e.,  almost 85% of the 
tweets are from only a few friends (less than 5%), and most other friends have little contribution. 
This demonstrates that friendship (or social interaction strength) plays a critical role on shaping her 
usage behavior on Twitter. 
Insight 1: It motivates us to design the socially-driven prefetching mechanism by leveraging 
the social friendship closeness among users.

Strong Power distribution in
the log-log scale

Less than 45 users



Observations and Insights from Measurements
Social friendship clustering
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Observation 2: we utilize the number of tweets received from a specific friend and the 
number of tweets sent by the user to that friend as the clustering features, and cluster the set of 
her friends into three types: close friends (i.e., Cluster 1), familiar friends (i.e., Cluster 2) and 
unfamiliar friends with infrequent contacts (i.e., Cluster 3). 
Insight 2: It motivates us to design the learning algorithm in a perspective of social closeness 
clustering.

Balanced interaction frequency
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Observations and Insights from Measurements
How social clustering impact user behavior?

Table 2. A user’s click probability distribution in different cases.

Observation 3: The user will click the media file with a probability of 0.64, 0.28, 0.13, when 
the media tweet is sent by a close,  familiar, and unfamiliar friend, respectively. . 
Insight 3: It comforts our assumption that social closeness really matters.



Key Insight: Social Closeness Plays A Critical 
Role on User’s Mobile Media Usage 
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Based on the above observations and insights, we propose
Spice: Socially-Driven Learning-Based Mobile Media Prefetching

Observation 1 Observation 2 Observation 3



Learning Feature Selection
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Network Dependence Social Friendship
Closeness

Training by Cluster-based LBM

Mobile Behavior
Pattern

Network Access
Mining

Social Feeds 
Clustering

Usage Profile 
Mining

Prediction



Trace-Driven Evaluation of the Learning 
Algorithm
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Cluster-based LBM Linear Regression

With the average prediction accuracy of 
65.54%, 77.93%, 84.51%, 80.38%, 

80.03% for 1, 2, ..., 5 clusters, respectively

84.51%,

With the average prediction accuracy of 
63.82%



System Overview
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Prefetching execution
Machine learning process

Scheduling process



Spice: Usage Adaptive Scheduling
Observations
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01:00 – 06:59 (midnight) 07:00 – 12:59 (morning) 13:00 – 18:59 (afternoon) 19:00 – 00:59 (night)

Interval distribution of two consecutive app usage (in 4 time zone):

Media tweets consumption in different time slot

Using mobile user behavior pattern to 
schedule the prefetching task
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Case Study of the Time Zone Number

Trace-driven emulations with the most active 1,000 users

Rarely impact on benefit Significantly impact on
battery overhead

Rarely impact on data
consumption

For most users, 4 time zone should enough, while it
still changes with different OSNs and users



Trace-Driven Emulation Evaluations

Results:
• Spice with WiFi and cellular achieves the best performance of 67.2% delay reduction per day. It 

uses 27.3 MB cellular traffic per month and 5.3% battery usage per day on average.
• Spice with WiFi only achieves the second best performance of 58.4% delay reduction per day. It 

achieves the lowest cost among all the prefetching strategies, with 21.4 MB per month and 4.6% 
battery usage per day on average.

• LR-based prefetching can only achieve 54.4% delay reduction with 31 MB cellular traffic per month 
and 6.8% battery usage per day on average.

• Compared with the case without prefetching (on launch), Spice with WiFi only consumes less 
cellular data traffic with an increase of around 1.4% battery usage per day on average
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