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Distributed Computation Offloading
for Mobile Cloud Computing



Growing Mobile Devices

 Growing mobile devices

= = b
o 526 million mobile devices and - .-n -1

connections were added in 2013
(Cisco, Feb 2014)

o Global mobile data traffic reached
1.5x10'8 Bytes/Month at the end of
2013 (Cisco, Feb 2014)

* Limited Mobile Resource
O Due to physical size constraint
O Limited computation capability &
limited battery capacity

o Difficult to support resource-hungry
apps, e.g., face recognition,
augmented reality




Mobile Cloud Computing

 Mobile Cloud Computing (MCC)

O Augment capability of mobile
devices by offloading computation
to cloud via wireless access

O Leverage resource-rich cloud
infrastructure

O Reduce computing time & save
energy

 Wireless Access Efficiency
O A critical factor for MCC

O Mobile users are coupling

Game theoretic approach for interactive

o Simultaneous computation computation offloading decision making

offloading = low wireless
access efficiency



System Model

Mobile Cloud Computing System

o A set of mobile device users N with computation intensive tasks

o Computation offloading to cloud via a wireless access base-station,

e.g., in a macrocell/ femtocell in cellular networks

Both communication and computation aspects play a key role
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Communication Model

* Mobile user n has computation offloading decision a, € {0,1}
i.e., to offload or not to offload

e Uplink data rate for computation offloading of user n:

R,(a) = Wlog,(1 + T s

)

o a=(ay,..,ay)> computation offloading decision profile of all users
o W - channel bandwidth
o B, = transmission power of user n

OntLmzn:an=1 PmHAm,s

o H, s => channel gain between user n and base-station s

o wy, =2 background interference



Computation Model

* Mobile user n has a computation task I,,=(B,,,D,,)
O B, -2 computation input data size, e.g., program codes and input states
o D,=> CPU cycles to accomplish the computation task

* Local computing approach (a,=0):
Time: T} = 2%
Energy:El = vT;Dn
o E!- CPU cycles per second of user n’s mobile device

o Vy=2 energy consumption per CPU cycle

* Cloud computing approach (a,=1):

.pmc — _bBn Dn
Time: T, R + FS
B
Energy:E5 = P, Rn?a)

o Ei-> CPU cycles per second allocated to user n by cloud
o Time overhead = offloading + computing



Computation Offloading

* Wireless access efficiency is bottleneck
o Too many mobile users choose computation offloading simultaneously
—> severe interference occurs
— lead to low data rate for computation offloading
- long transmission time and high energy consumption

* Computation offloading decision makings for mobile users

o Users are coupling, “to offload or not” depends on other users’
decisions

o Centralized optimization is challenging
- Combinatorial optimization and often NP-hard

- Need complete information, leading to high overhead for
information exchange



Distributed Computation Offloading Game

* Motivations
O Mobile devices are owned by different individuals and they may pursue
different interests
O Leverage the power of crowds for devising distributed algorithm with low
complexity
 Game formulation
o Player set: mobile user set
o Strategy space: computation offloading decision a, € {0,1}
o Cost function: V. (a) = ytTime + y,¢Energy
vE =1,y¢ = 0 2 user n wants to reduce delay
vE =0,y = 1 = user n wants to save energy

* Nash equilibrium a * = (a,, a*,,) satisfies that
Ay = argming cio 1} V,(ay, aZ,),Vn € N
o Stable system state, no user has incentive to deviate



Distributed Computation Offloading Game

e Existence of Nash equilibrium

THEOREM: The distributed computation offloading game for mobile
cloud computing admits a Nash equilibrium.

e Structural property

THEOREM: The distributed computation offloading game for mobile
cloud computing possesses the finite improvement property.

O Any asynchronous better response update process (i.e., no more than one
player updates the strategy at any given time) must be finite and leads to
a Nash equilibrium
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Distributed Computation Offloading Algorithm

e Distributed algorithm for computation offloading decision making

o Motivation: enable mobile users to achieve a mutually satisfactory
decision making, prior to the computation task execution

o Key idea: based on the finite improvement property, i.e., let one mobile
user improve its computation offloading decision at a time
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Distributed Computation Offloading Algorithm

* Slotted structure for decision update = using clock signal from base-station
for synchronization

12



Distributed Computation Offloading Algorithm

* The following operations are carried out during a decision slot:

o Wireless interference measurement: each user locally measures the
received interference generated by other users

o User choosing computation offloading will transmit some pilot signal

() /é\ ()
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Distributed Computation Offloading Algorithm

* The following operations are carried out during a decision slot:

o Wireless interference measurement: each user locally measures the
received interference generated by other users

o User choosing computation offloading will transmit some pilot signal

o Decision update contention: based on the interference measurement,
each user can check whether it can improve by changing its decision:

o If yes, content for decision update by informing the cloud with RTU
(request-to-update) message
o If no, do not content and keep the same decision in next slot

14



Distributed Computation Offloading Algorithm

* The following operations are carried out during a decision slot:

o Wireless interference measurement: each user locally measures the
received interference generated by other users

o User choosing computation offloading will transmit some pilot signal

o Decision update contention: based on the interference measurement,
each user can check whether it can improve by changing its decision:

o If yes, content for decision update by informing the cloud with RTU
(request-to-update) message
o If no, do not content and keep the same decision in next slot
o Decision update scheduling: the cloud randomly selects one update

requesting user and send the update-permission (UP) message to the user
for updating its decision for the next slot
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Distributed Computation Offloading Algorithm

* The following operations are carried out during a decision slot:

o Wireless interference measurement: each user locally measures the
received interference generated by other users

o User choosing computation offloading will transmit some pilot signal

o Decision update contention: based on the interference measurement,
each user can check whether it can improve by changing its decision:

o If yes, content for decision update by informing the cloud with RTU
(request-to-update) message
o If no, do not content and keep the same decision in next slot
o Decision update scheduling: the cloud randomly selects one update

requesting user and send the update-permission (UP) message to the user
for updating its decision for the next slot

o When no RTU messages are received, the cloud will broadcast the END
message

o User will execute local/cloud computing according to achieved decisions at
last slot (i.e., Nash equilibrium)



Numerical Results

Mobile users randomly scatter over a square area 100mX100m
Channel gain of a user depends on the distance from base-station

Users have different computing tasks (e.g., face recognition) and different
demands (delay reduction/energy saving)



Numerical Results

System-wide computing cost

200

B L ocal mobile computing by all users
120 - | I cloud computing by all users
[ IDecentralized computation offloading

160 -
[ ]centralized optimal computation offloading
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Up-to 33% and 38% cost reduction over local/cloud computing by all users,
respectively

At most 10% performance loss, compared with centralized optimum
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Background and Motivation:
Waiting or Latency in Real-Life Media Usage

We are suffering from media access latency everyday

Official Half-Life 3 Trailer

YouTube- Audios YouTube-Videos

=~ Nl /

Twitter-Snapshots Google Picasa-Pictures



Background and Motivation:
Waiting or Latency in Real-Life Media Usage

YouTube- Audios Let us consider the Twitter media

/ dCCess case.

v)

This would be an emergency QoOE issue
particularly in the mobile environment
(e.q., taking subline, bus, eftc).

Twitter-Snapshots 21




Potential Solutions:

1) CDN-based accelerate approach

2) Prefetching, e.g.,
1) IMP (MobiSys 2012)
* High prediction demands
2) EarlyBird (MobiHoc 2015)
« Content-based solution



Prefetching: Promising but Challenging

Traditional approach:

Combine content-based analysis and machine learning/data mining
based solutions.

Challenging:
What to prefetch? (content selection is too hard!)

When to prefetch? (how to schedule the mechanism?)
How to prefetch? (in which mobile environment?)

Nolvety:

It is straightforward to rethink the possibility whether what you want
to see also strongly depends on whom published or shared it?

Question: We want to use socially-driven prefetching, is that possible?

23




Early Stage Measurements:
Usage Statistics Selection

Table 1. Data collection from Twidere Android app on Google Play

Events Content
App Launch and Close Timestamp
Network Availablity Timestamp, connection pattern
Tweets Click Timestamp, tweet’s attributes, participant

Embedded Media Preview Timestamp, tweet ID, preview URL
Media Click Timestamp, tweets ID list, link URL

Coarse Location Timestamp, coordinates

Others Tweets’ favorite, retweet, and publish



Early Stage Measurements:
Dataset Description

Europe: 5,000

T

y L— Asia: 9,000

US: 6,000———

* Duration: March 2015 to June 2015.
- Demographical Composition: More than 20,000 users around the

world.
- Data Size: more than 233 million tweets, among which 9.2 millions

are clicked and 72% of the clicked tweets contain media file.
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Observations and Insights from Measurements
Mobile media object ranking

103

| Strong Power distribution in
__—  the log-log scale

10% |

10t |

Less than 45 users ' -
| [ )

Media tweets from a specific friend

10° { I \ I Yomm—
10° 10 10? 10° 10*
Friend ID after ranking

Observation 1: We observe a strong power law phenomenon, i.e., almost 85% of the

tweets are from only a few friends (less than 5%), and most other friends have little contribution.
This demonstrates that friendship (or social interaction strength) plays a critical role on shaping her
usage behavior on Twitter.

Insight 1: it motivates us to design the socially-driven prefetching mechanism by leveraging
the social friendship closeness among users.
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Observations and Insights from Measurements
Social friendship clustering
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Weekly average number of tweets received by user

Observation 2: we utilize the number of tweets received from a specific friend and the
number of tweets sent by the user to that friend as the clustering features, and cluster the set of
her friends into three types: close friends (i.e., Cluster 1), familiar friends (i.e., Cluster 2) and
unfamiliar friends with infrequent contacts (i.e., Cluster 3).

Insight 2: it motivates us to design the learning algorithm in a perspective of social closeness
clustering.
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Observations and Insights from Measurements
How social clustering impact user behavior?

Table 2. A user’s click probability distribution in different cases.

close (%) | familiar (%) unfamiliar (%)
Total Statistics Media click 64.36 28.49 13.22
Network On WiFi 71.26 19.69 1.97
Features On cellular 4943 13.66 1.47
Published by 33.96 13.46 32.44
Interaction Mentioning 33.96 13.46 9.01
Features Favored by 98.99 97.55 0.52
Retweeted by 97.66 9.57 0.06
Replied by 50.00 28.49 23.40

Observation 3: The user will click the media file with a probability of 0.64, 0.28, 0.13, when

the media tweet is sent by a close, familiar, and unfamiliar friend, respectively. .
Insight 3: 1t comforts our assumption that social closeness really matters.
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Media tweets from a specific friend

Key Insight: Social Closeness Plays A Critical
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10° 10 20 30
Friend ID after ranking Weekly average number of tweets received by user

close (%) | familiar (%) | unfamiliar (%)
Totel Statistics | Media click | 64.30 849 1322
Network On WiF 71.26 19.69 197
Fegtures On cellddar | 4943 13.66 147
Published by | 33.96 1346 nH
o Mentioning | 33.96 1346 901
Feates Favored by | 98.99 9155 052
Retweeted by | 97.66 957 0.06
Replied by 50,00 2849 240

|

Based on the above observations and insights, we propose

Spice: Socially-Driven Learning-Based Mobile Media Prefetching
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Learning Feature Selection

|

Network Access
Mining

|

Network Dependence

Social Feeds
Clustering

l

|

Usage Profile
Mining

]

l

Social Friendship
Closeness

Mobile Behavior
Pattern

v

Training by Cluster-based LBM

Prediction
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Trace-Driven Evaluation of the Learning
Algorithm

1.0
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Cluster-based LBM

With the average prediction accuracy of
65.54%, 77.93%, 84.51%, 80.38%,
80.03% for 1, 2, ..., 5 clusters, respectively
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Accuracy

Linear Regression

With the average prediction accuracy of
63.82%
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Prefetching execution

System Overview

Twitter Server
Download

T |

\umm

Scheduling process
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Cloud Server

Machine learning process
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Spice: Usage Adaptive Scheduling
Observations

Interval distribution of two consecutive app usage (in 4 time zone):
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Using mobile user behavior pattern to
schedule the prefetching task
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Case Study of the Time Zone Number

Trace-driven emulations with the most active 1,000 users
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CDF

Trace-Driven Emulation Evaluations
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+ Spice with WiFi and cellular achieves the best performance of 67.2% delay reduction per day. It
uses 27.3 MB cellular traffic per month and 5.3% battery usage per day on average.

« Spice with WiFi only achieves the second best performance of 58.4% delay reduction per day. It
achieves the lowest cost among all the prefetching strategies, with 21.4 MB per month and 4.6%

battery usage per day on average.

* LR-based prefetching can only achieve 54.4% delay reduction with 31 MB cellular traffic per month
and 6.8% battery usage per day on average.

« Compared with the case without prefetching (on launch), Spice with WiFi only consumes less
cellular data traffic with an increase of around 1.4% battery usage per day on average
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