
Application Layer

Computer Networks, Winter 2020/2021

Lecturer: Prof. Xiaoming Fu

Assistants: Yachao Shao (MSc),

Fabian Wölk (MSc)

Chapter 2: The Application Layer

Our goals:

o Conceptual aspects of network application protocols

o client-server paradigm

o peer-to-peer paradigm

o learn about protocols by examining popular

application-level protocols

o HTTP

o SMTP, IMAP

o DNS

2: Data Link Layer 2-2

Application Layer

o 2.1 Principles of

network applications

o 2.2 Web and HTTP

o 2.3 E-mail, SMTP,

IMAP

o 2.4 The Domain Name

System DNS

o 2.5 P2P applications

2: Data Link Layer 2-3

Application Layer 2-4

Some network apps

o e-mail

o web

o text messaging

o remote login

o P2P file sharing

o multi-user network

games

o streaming stored

video (YouTube,

Hulu, Netflix)

o voice over IP (e.g.,

Skype)

o real-time video

conferencing

o social networking

o Internet search

o …

o …

Application Layer 2-5

Creating a network app

write programs that:

o run on (different) end systems

o communicate over network

o e.g., web server software

communicates with browser

software

no need to write software for

network-core devices

o network-core devices do not

run user applications

o applications on end systems

allows for rapid app

development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Application Layer 2-6

Client-server architecture

server:
o always-on host

o permanent IP address

o often in data centers for

scaling

clients:
o communicate with server

o may be intermittently

connected

o may have dynamic IP

addresses

o do not communicate

directly with each other

client/server

Application Layer 2-7

Processes communicating

process: program

running within a host

o within same host, two

processes communicate

using inter-process

communication (defined

by OS)

o processes in different

hosts communicate by

exchanging messages

via sockets (later in

transport layer)

client process: process

that initiates

communication

server process: process

that waits to be

contacted

▪ aside: applications with

P2P architectures have

client processes & server

processes

clients, servers

Application Layer 2-8

Addressing processes

o to receive messages,

process must have

identifier

o host device has unique

32-bit IP address

o Q: does IP address of

host on which process

runs suffice for identifying

the process?

o identifier includes both IP

address and port numbers

associated with process

on host.

o example port numbers:

o HTTP server: 80

o mail server: 25

o to send HTTP message to

gaia.cs.umass.edu web

server:

o IP address: 128.119.245.12

o port number: 80

o more shortly…

▪ A: no, many
processes can be
running on same host

Application Layer 2-9

App-layer protocol defines

o types of messages

exchanged,
• e.g., request, response

o message syntax:
• what fields in messages &

how fields are delineated

o message semantics
• meaning of information in

fields

o rules for when and how

processes send &

respond to messages

open protocols:

o defined in RFCs

o allows for

interoperability

o e.g., HTTP, SMTP

proprietary protocols:

o e.g., Skype

Application Layer

o 2.1 Principles of

network applications

o 2.2 Web and HTTP

o 2.3 E-mail, SMTP,

IMAP

o 2.4 The Domain Name

System DNS

o 2.5 P2P applications

2: Data Link Layer 2-10

Application Layer 2-11

Web and HTTP

First, a review…

o web page consists of objects, each of which

can be stored on different Web servers

o object can be HTML file, JPEG image, Java

applet, audio file,…

o web page consists of base HTML-file which

includes several referenced objects

o each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-12

HTTP overview

HTTP: hypertext
transfer protocol

o Web’s application layer
protocol

o client/server model
o client: browser that

requests, receives,
(using HTTP
protocol) and
“displays” Web
objects

o server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iPhone running

Safari browser

Application Layer 2-13

HTTP overview (continued)

uses TCP:
o client initiates TCP connection

(creates socket) to server,

port 80

o server accepts TCP

connection from client

o HTTP messages (application-

layer protocol messages)

exchanged between browser

(HTTP client) and Web server

(HTTP server)

o TCP connection closed

HTTP is “stateless”
o server maintains no

information about past
client requests

protocols that maintain
“state” are complex!

▪ past history (state) must be
maintained

▪ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-14

HTTP connections: two types

non-persistent HTTP

1. TCP connection
opened

2. at most one object
sent over TCP
connection

3. TCP connection
closed

downloading multiple
objects required multiple
connections

persistent HTTP

oTCP connection opened
to a server

omultiple objects can be
sent over single TCP
connection between
client, and that server

oTCP connection closed

Application Layer 2-15

Non-persistent HTTP

suppose user enters URL:

1a. HTTP client initiates TCP

connection to HTTP server

(process) at

www.someSchool.edu on port

80

2. HTTP client sends HTTP request

message (containing URL) into

TCP connection socket. Message

indicates that client wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting for

TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response message

containing requested object, and

sends message into its socket

time

(contains text,

references to

10

jpeg images)

www.someSchool.edu/someDepartment/home.index

Application Layer 2-16

5. HTTP client receives response

message containing html file,

displays html. Parsing html file,

finds 10 referenced jpeg

objects

6. Steps 1-5 repeated for each of 10

jpeg objects

4. HTTP server closes TCP connection.

time

Non-persistent HTTP

Application Layer 2-17

Non-persistent HTTP: response time

RTT (definition): time for a

small packet to travel from

client to server and back

HTTP response time:

o one RTT to initiate TCP

connection

o one RTT for HTTP request and

first few bytes of HTTP

response to return

o file transmission time

o non-persistent HTTP response

time =

2RTT+ file transmission

time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-18

Persistent HTTP

o non-persistent HTTP

issues:
o requires 2 RTTs per object

o OS overhead for each TCP

connection

o browsers often open multiple

parallel TCP connections to

fetch referenced objects in

parallel

persistent HTTP
(HTTP1.1):

o server leaves connection

open after sending response

o subsequent HTTP messages

between same client/server

sent over open connection

o client sends requests as

soon as it encounters a

referenced object

o as little as one RTT for all

the referenced objects

(cutting response time in

half)

Application Layer 2-19

HTTP request message

o two types of HTTP messages: request, response

o HTTP request message:

o ASCII (human-readable format)

request line

(GET, POST,

HEAD commands)

header

lines

carriage return,

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general

format

Application Layer 2-20

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer 2-21

Request messages

POST method:

▪ web page often includes form input

▪ user input sent from client to server
in entity body of HTTP POST
request message

GET method:

▪ uses GET method

▪ input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-22

Method types

HTTP/1.0:

o GET

o POST

o HEAD

o requests headers

(only) that would be

returned if specified

URL were requested

with an HTTP GET

method.

HTTP/1.1:

o GET, POST, HEAD

o PUT
▪ uploads new file (object)

to server

▪ completely replaces file
that exists at specified
URL with content in entity
body of POST HTTP
request message

o DELETE

o deletes file specified

in the URL field

Application Layer 2-23

HTTP response message

status line

(protocol

status code

status phrase)

header

lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-24

HTTP response status codes

200 OK
o request succeeded, requested object later in this msg

301 Moved Permanently
o requested object moved, new location specified later in this

msg (Location:)

400 Bad Request
o request msg not understood by server

404 Not Found
o requested document not found on this server

505 HTTP Version Not Supported

o status code appears in 1st line in server-to-
client response message.

o some sample codes:

Application Layer 2-25

User-server state: cookies

Recall: HTTP
GET/response interaction
is stateless

ono notion of multi-step exchanges
of HTTP messages to complete a
Web “transaction”
o no need for client/server to track

“state” of multi-step exchange

o all HTTP requests are independent of
each other

o no need for client/server to “recover”
from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes

two changes to X, or none at all

time time

X

X

X’

X’’

X’’

t’

Q: what happens if network connection or

client crashes at t’ ?

Application Layer 2-26

User-server state: cookies

many Web sites use
cookies

four components:
1) cookie header line of

HTTP response message

2) cookie header line in
next HTTP request
message

3) cookie file kept on user’s
host, managed by user’s
browser

4) back-end database at
Web site

example:

o Susan uses browser on laptop,

visits specific e-commerce site

for first time

o when initial HTTP requests

arrives at site, site creates:

o unique ID (aka “cookie”)

o entry in backend database for

ID

o subsequent HTTP requests

from Susan to this site will

contain cookie ID value,

allowing site to “identify” Susan

Application Layer 2-27

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

Application Layer 2-28

Cookies (continued)

what cookies can be
used for:

o authorization
o shopping carts
o recommendations
o user session state (Web

e-mail)

cookies and privacy:
▪ cookies permit sites to

learn a lot about you on
their site.

▪ third party persistent
cookies (tracking
cookies) allow common
identity (cookie value)
to be tracked across
multiple web sites

aside

how to keep “state”:
o at protocol endpoints:

maintain state at
sender/receiver over multiple
transactions

o in messages: cookies in HTTP
messages carry state

Application Layer 2-29

Web caches (proxy server)

ouser configures browser
to point to a (local) Web
cache

obrowser sends all HTTP
requests to cache
o if object in cache: cache

returns object to client

o else cache requests
object from origin server,
caches received object,
then returns object to
client

goal: satisfy client request without involving origin

server

client

proxy

server

client origin

server

origin

server

Application Layer 2-30

More about Web caching

o cache acts as both client

and server

o server for original

requesting client

o client to origin server

o typically cache is installed

by ISP (university,

company, residential ISP)

why Web caching?

o reduce response time for

client request

o cache is closer to client

o reduce traffic on an

institution‘s access link

o Internet dense with caches:

o enables “poor” content

providers to effectively

deliver content (so too does

P2P file sharing)

o Faster and cheaper as

buying faster access links!

o server tells cache about
object’s allowable caching
in response header:

Application Layer 2-31

Conditional GET

o Goal: don’t send object if

cache has up-to-date

cached version

o no object transmission

delay

o lower link utilization

o cache: specify date of

cached copy in HTTP

request

If-modified-since: <date>

o server: response contains no

object if cached copy is up-
to-date: HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

Application Layer 2-32

HTTP/2

Key goal: decreased delay in multi-object
HTTP requests

HTTP1.1: introduced multiple, pipelined GETs
over single TCP connection

oserver responds in-order (FCFS: first-come-first-served
scheduling) to GET requests

owith FCFS, small object may have to wait for
transmission (head-of-line (HOL) blocking) behind
large object(s)

o loss recovery (retransmitting lost TCP segments) stalls
object transmission

Application Layer 2-33

HTTP/2

Key goal: decreased delay in multi-object
HTTP requests

HTTP/2: [RFC 7540, 2015] increased flexibility at

server in sending objects to client:
o methods, status codes, most header fields unchanged

from HTTP 1.1

o transmission order of requested objects based on
client-specified object priority (not necessarily FCFS)

o push unrequested objects to client

o divide objects into frames, schedule frames to mitigate
HOL blocking

Application Layer 2-34

HTTP/2: mitigating HOL blocking

HTTP 1.1: client requests 1 large object (e.g., video
file) and 3 smaller objects

client
GET O1

GET O2
GET O3

GET O4

O1
O2

O3O4

object data requested

O1

O2

O3

O4

objects delivered in order requested: O2, O3, O4 wait behind O1

Application Layer 2-35

HTTP/2: mitigating HOL blocking

HTTP/2: objects divided into frames, frame
transmission interleaved

client
GET O1

GET O2
GET O3

GET O4

O2

O4

object data requested

O1

O2

O3

O4

O3

O1

O2, O3, O4 delivered quickly, O1 slightly delayed

Application Layer 2-36

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection
means:

o recovery from packet loss still stalls all object
transmissions

o as in HTTP 1.1, browsers have incentive to open
multiple parallel TCP connections to reduce stalling,
increase overall throughput

o no security over vanilla TCP connection

o HTTP/3: adds security, per object error- and
congestion-control (more pipelining) over UDP

Application Layer

o 2.1 Principles of

network applications

o 2.2 Web and HTTP

o 2.3 E-mail, SMTP,

IMAP

o 2.4 The Domain Name

System DNS

o 2.5 P2P applications

2: Data Link Layer 2-37

Application Layer 2-38

Electronic mail

Three major components:

o user agents

o mail servers

o simple mail transfer protocol:

SMTP

User Agent

o a.k.a. “mail reader”

o composing, editing, reading

mail messages

o e.g., Outlook, iPhone mail

client

o outgoing, incoming messages

stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-39

Electronic mail: mail servers

mail servers:

o mailbox contains

incoming messages for

user

o message queue of

outgoing (to be sent)

mail messages

o SMTP protocol between

mail servers to send

email messages

o client: sending mail server

o “server”: receiving mail

server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-40

Electronic Mail: SMTP [RFC 5321]

o uses TCP to reliably transfer email

message from client (mail server

initiating connection) to server, port

25

o direct transfer: sending server

(acting like client) to receiving

server

o three phases of transfer

o SMTP handshaking (greeting)

o SMTP transfer of messages

o SMTP closure

o command/response interaction (like

HTTP)

o commands: ASCII text

o response: status code and phrase

initiate TCP
connection

RTT

time

220

250 Hello

HELO
SMTP

handshaking

TCP connection
initiated

“client”
SMTP server

“server”
SMTP server

SMTP
transfers

Application Layer 2-41

SMTP: final words

o SMTP uses persistent

connections

o SMTP requires

message (header &

body) to be in 7-bit

ASCII

o SMTP server uses
CRLF.CRLF to

determine end of

message

comparison with HTTP:
o HTTP: client pull

o SMTP: client push

o both have ASCII

command/response

interaction, status codes

o HTTP: each object

encapsulated in its own

response message

o SMTP: multiple objects sent

in multipart message

SMTP: protocol for exchanging e-mail messages, defined
in RFC 5321 (like RFC 7231 defines HTTP)

RFC 2822 defines syntax for e-mail message itself (like
HTML defines syntax for web documents)

Application Layer 2-42

Mail message format

o header lines, e.g.,

o To:

o From:

o Subject:

these lines, within the body of the
email message area different from
SMTP MAIL FROM:, RCPT TO:
commands!

o Body: the “message”:
ASCII characters only

blank

line

header

body

Application Layer 2-43

Mail access protocols

o SMTP: delivery/storage of e-mails to receiver’s

server

o mail access protocol: retrieval from server

o IMAP: Internet Mail Access Protocol [RFC 3501]: etc.

provides web-based interface on top of STMP (to send),

IMAP (or POP) to retrieve e-mail messages

o HTTP: gmail, Hotmail, Yahoo! Mail, etc. provides web-

based interface on top of STMP (to send), IMAP (or

POP) to retrieve e-mail messages

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user

agent

user

agent

Application Layer

o 2.1 Principles of

network applications

o 2.2 Web and HTTP

o 2.3 E-mail, SMTP,

IMAP

o 2.4 The Domain Name

System DNS

o 2.5 P2P applications

2: Data Link Layer 2-44

Application Layer 2-45

DNS: domain name system

people: many identifiers:

o SSN, name, passport #

Internet hosts, routers:

o IP address (32 bit) - used

for addressing datagrams

o “name”, e.g.,

www.yahoo.com - used

by humans

Q: how to map between IP

address and name, and

vice versa ?

Domain Name System:

o distributed database

implemented in hierarchy of

many name servers

o application-layer protocol:

hosts, name servers

communicate to resolve

names (address/name

translation)
o note: core Internet function,

implemented as application-
layer protocol

o complexity at network’s
“edge”

Application Layer 2-46

DNS: services, structure

Q: why not centralize

DNS?

o single point of failure

o traffic volume

o distant centralized

database

o maintenance

DNS services

o hostname-to-IP address

translation

o host aliasing

o canonical, alias names

o mail server aliasing

o load distribution

o replicated Web

servers: many IP

addresses

correspond to one

name

A: doesn‘t scale!
o Comcast DNS servers alone:

600B DNS queries/day

o Akamai DNS servers alone:

2.2T DNS queries/day

Application Layer 2-47

Thinking about the DNS

humongous distributed database:
o ~ billion records, each simple

handles many trillions of
queries/day:
o many more reads than writes

o performance matters: almost every
Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:
o millions of different organizations responsible

for their records

“bulletproof”: reliability, security

Application Layer 2-48

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical

database

client wants IP for www.amazon.com; 1st approximation:

o client queries root server to find com DNS server

o client queries .com DNS server to get amazon.com DNS

server

o client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Top Level Domain

Root

Authoritative

Application Layer 2-49

DNS: root name servers

o official, contact-of-last-
resort by name servers that
can not resolve name

o incredibly important Internet
function

o Internet couldn’t function
without it!

o DNSSEC – provides security
(authentication, message
integrity)

o ICANN (Internet
Corporation for Assigned
Names and Numbers)
manages root DNS domain

13 logical root name “servers”
worldwide each “server” replicated

many times (~200 servers in US)

Application Layer 2-50

TLD, authoritative servers

top-level domain (TLD) servers:

o responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp

o Network Solutions authoritative registry for .com, .net TLD

o Educause for .edu TLD

authoritative DNS servers:

o organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts

o can be maintained by organization or service provider

Application Layer 2-51

Local DNS name server

o does not strictly belong to hierarchy

o each ISP (residential ISP, company,

university) has one

o also called “default name server”

o when host makes DNS query, query is sent to

its local DNS server

o Local DNS server returns reply, answering:

• from its local cache of recent name-to-address

translation pairs (but may be out of date!)

• acts as proxy, forwards query into DNS hierarchy for

resolution

Application Layer 2-52

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

o host at cis.poly.edu

wants IP address for

gaia.cs.umass.edu

iterated query:
o contacted server

replies with name of
server to contact

o “I don’t know this
name, but ask this
server”

Application Layer 2-53

45

6

3

recursive query:

o puts burden of

name resolution on

contacted name

server

o heavy load at

upper levels of

hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

TLD DNS
server

DNS name
resolution example

o host at cis.poly.edu

wants IP address for

gaia.cs.umass.edu

Application Layer 2-54

DNS: caching, updating

records

o once (any) name server learns mapping, it caches

mapping immediately returns a cached mapping in

response to a query

o caching improves response time

o cache entries timeout (disappear) after some time (TTL)

o TLD servers typically cached in local name servers

• thus root name servers not often visited

o cached entries may be out-of-date

o if name host changes IP address, may not be known

Internet-wide until all TTLs expire

o best effort name-to-address translation!

Application Layer 2-55

DNS records

DNS: distributed database storing resource records

(RR)

type=NS
o name is domain (e.g.,

foo.com)

o value is hostname of

authoritative name

server for this domain

RR format: (name, value, type, ttl)

type=A
▪ name is hostname

▪ value is IP address

type=CNAME
▪ name is alias name for some

“canonical” (the real) name

▪ www.ibm.com is really

servereast.backup2.ibm.com

▪ value is canonical name

type=MX
▪ value is name of mailserver

associated with name

Application Layer 2-56

DNS protocol, messages

o query and reply messages, both with same

message format

message header
▪ identification: 16 bit # for query,

reply to query uses same #

▪ flags:

▪ query or reply

▪ recursion desired

▪ recursion available

▪ reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-57

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol, messages

o query and reply messages, both with same

message format

Application Layer 2-58

Inserting records into DNS

o example: new startup “Network Utopia”

o register name networkuptopia.com at DNS

registrar (e.g., Network Solutions)

o provide names, IP addresses of authoritative name

server (primary and secondary)

o registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

o create authoritative server locally with IP address
212.212.212.1

o type A record for www.networkuptopia.com

o type MX record for networkutopia.com

Attacking DNS

DDoS attacks

o bombard root servers

with traffic

o not successful to date

o traffic filtering

o local DNS servers

cache IPs of TLD

servers, allowing root

server bypass

o bombard TLD servers

o potentially more

dangerous

Spoofing attacks
o intercept DNS queries,

returning bogus replies

▪ DNS cache poisoning

▪ RFC 4033: DNSSEC

authentication services

Application Layer 2-59

Application Layer

o 2.1 Principles of

network applications

o 2.2 Web and HTTP

o 2.3 E-mail, SMTP,

IMAP

o 2.4 The Domain Name

System DNS

o 2.5 P2P applications

2: Data Link Layer 2-60

Application Layer 2-61

Pure P2P architecture

o no always-on server

o arbitrary end systems directly

communicate

o peers are intermittently

connected and change IP

addresses

o peers request service from

other peers, provide service in

return to other peers

o self scalability – new peers bring

new service capacity, and new

service demands

o examples: file distribution

(BitTorrent), Streaming (KanKan),

VoIP (Skype)

Application Layer 2-62

File distribution: client-server vs P2P

Question: how much time to distribute file (size F)

from one server to N peers?

o peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-63

File distribution time: client-server

o server transmission: must

sequentially send (upload)

N file copies:
o time to send one copy: F/us

o time to send N copies:

NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

▪ client: each client must download
file copy
• dmin = min client download rate

• min client download time: F/dmin

us

network

di

ui

F

Application Layer 2-64

File distribution time: P2P

o server transmission: must

upload at least one copy

o time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

▪ client: each client must download
file copy
• min client download time: F/dmin

▪ clients: as aggregate must download NF bits

• max upload rate (limiting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

Application Layer 2-65

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Chapter 2: summary

o application architectures

o client-server

o P2P

our study of network apps now complete!

Application Layer 2-66

o specific protocols:

o HTTP

o SMTP, IMAP

o DNS

o typical request/reply

message exchange:

o client requests info or

service

o server responds with

data, status code

o message formats:

o headers: fields giving

info about data

o data: info(payload)

being communicated
Application Layer 2-67

important themes:

ocentralized vs.

decentralized

ostateless vs. stateful

most importantly: learned about protocols!

Chapter 2: summary

Application Layer 2-68

Additional slides

Caching example:

Application Layer 2-69

origin

servers
public

Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

assumptions:
o avg object size: 100K bits

o avg request rate from browsers to origin
servers:15/sec

o avg data rate to browsers: 1.50 Mbps

o RTT from institutional router to any origin
server: 2 sec

o access link rate: 1.54 Mbps

consequences:
o LAN utilization: 15%

o access link utilization = 99%

o total delay = Internet delay + access delay
+ LAN delay

= 2 sec + minutes + usecs

problem!

Caching example: fatter access

link

Application Layer 2-70

assumptions:
o avg object size: 100K bits

o avg request rate from browsers to origin
servers:15/sec

o avg data rate to browsers: 1.50 Mbps

o RTT from institutional router to any origin
server: 2 sec

o access link rate: 1.54 Mbps

consequences:
o LAN utilization: 15%

o access link utilization = 99%

o total delay = Internet delay + access delay
+ LAN delay

= 2 sec + minutes + usecs

origin

servers

1.54 Mbps

access link

154 Mbps
154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public

Internet

institutional

network
1 Gbps LAN

Caching example: install local

cache

institutional

network
1 Gbps LAN

Application Layer 2-71

origin

servers

1.54 Mbps

access link

local web
cache

assumptions:
o avg object size: 100K bits

o avg request rate from browsers to origin
servers:15/sec

o avg data rate to browsers: 1.50 Mbps

o RTT from institutional router to any
origin server: 2 sec

o access link rate: 1.54 Mbps

consequences:
o LAN utilization: 15%

o access link utilization = 100%

o total delay = Internet delay + access delay
+ LAN delay

= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public

Internet

Caching example: install local

cache

Application Layer 2-72

Calculating access link

utilization, delay with

cache:
o suppose cache hit rate is 0.4

o 40% requests satisfied at cache,

60% requests satisfied at origin

origin

servers

1.54 Mbps

access link

o access link utilization:
o 60% of requests use access link

o data rate to browsers over access link

o = 0.6*1.50 Mbps = .9 Mbps

o utilization = 0.9/1.54 = .58

o total delay
o = 0.6 * (delay from origin servers) +0.4 *

(delay when satisfied at cache)

o = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

o less than with 154 Mbps link (and cheaper
too!)

public

Internet

institutional

network
1 Gbps LAN

local web
cache

Application Layer 2-73

Sample SMTP interaction

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

Scenario: Alice sends message

to Bob

Application Layer 2-74

user

agent

1) Alice uses UA to compose

message “to”
bob@someschool.edu

2) Alice’s UA sends

message to her mail

server; message placed in

message queue

3) client side of SMTP opens

TCP connection with

Bob’s mail server

4) SMTP client sends Alice’s

message over the TCP

connection

5) Bob’s mail server places

the message in Bob’s

mailbox

6) Bob invokes his user

agent to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Application Layer 2-75

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

o file divided into 256Kb chunks

o peers in torrent send/receive file chunks

… obtains list

of peers from tracker
… and begins exchanging

file chunks with peers in torrent

Application Layer 2-76

o peer joining torrent:

o has no chunks, but will

accumulate them over

time from other peers

o registers with tracker to

get list of peers, connects

to subset of peers

(“neighbors”)

o while downloading, peer uploads chunks to other peers
o peer may change peers with whom it exchanges chunks
o churn: peers may come and go
o once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

P2P file distribution: BitTorrent

Application Layer 2-77

BitTorrent: requesting, sending file

chunks

requesting chunks:

o at any given time,

different peers have

different subsets of file

chunks

o periodically, Alice asks

each peer for list of

chunks that they have

o Alice requests missing

chunks from peers, rarest

first

sending chunks: tit-for-tat

o Alice sends chunks to those
four peers currently sending
her chunks at highest rate
o other peers are choked by

Alice (do not receive chunks
from her)

o re-evaluate top 4 every10 secs

o every 30 secs: randomly
select another peer, starts
sending chunks
o “optimistically unchoke” this

peer
o newly chosen peer may join

top 4

Application Layer 2-78

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

