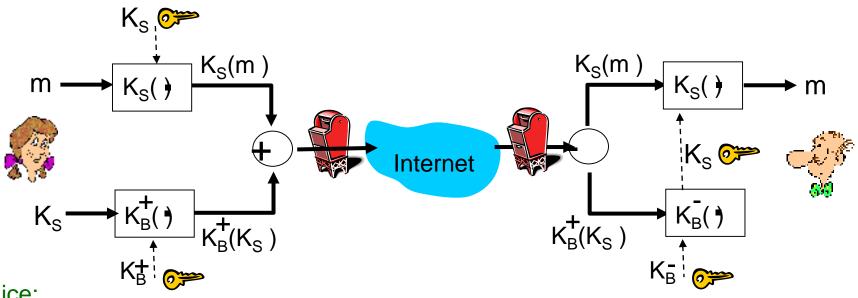
Computer Networks

Yachao Shao yshao@gwdg.de



 Illustrate how Alice can send a confidential email to Bob using public/private keying.

Secure E-Mail

Alice:

- o generates random symmetric private key, K_S.
- $_{\odot}~$ encrypts message with K_{S} (for efficiency)
- $_{\odot}~$ also encrypts K_{S} with Bob's public key.
- \circ sends both K_S(m) and K_B(K_S) to Bob.

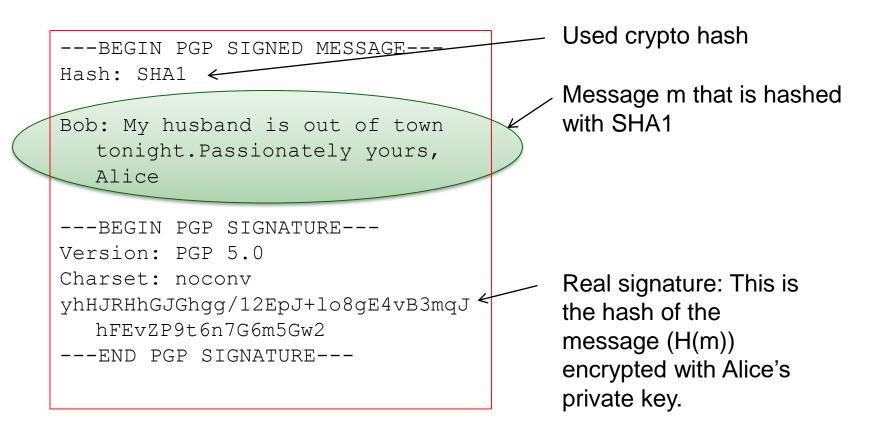
Bob: uses his private key to decrypt and recover K_{s} $_{\odot}\,$ uses K_{s} to decrypt $K_{s}(m)$ to recover m

Q2

 Why is a symmetric key used in most protocols to encrypt a data payload (the message etc.), even if a public/private key infrastructure exists?

Why symmetric keys?

- Public/Private keying more costly
- Minimal use of public/private key minimizes the key exposure
 - Symmetric key can be generated each time on the fly and is therefore always fresh
 - Public/Private key is always the same. Encrypting large amounts of data could compromise the key... (although no efficient algorithm is known yet)


Q3

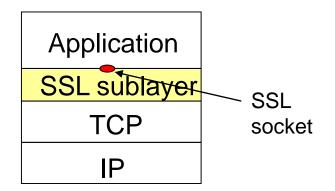
 Please explain in your own words the structure of the following PGP signed message (especially: how does the signature work?)

```
---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1
Bob: My husband is out of town tonight.Passionately yours, Alice
---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+108gE4vB3mqJhFEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---
```


PGP E-Mail signature

N[−]E[−]T[™] W[−]O[−]R[−]K[−]S Verification: Bob decrypts the PGP signature and obtains H(m). Additionally he computes H(m) for the message himself and computes it with the H(m) Alice computed.

• What are the three main phases of SSL?


SSL

- What are the three main phases of SSL?
 - 1. Handshake (TCP connection, authentication + master secret generation)
 - $_{\circ}$ 2. Key derivation
 - 3. Data transfer

SSL

- On what layer does SSL reside and why is that advantageous?
 - provides transport layer
 security to any TCP-based
 application using
 SSL services.

TCP enhanced with SSL

 o 6. Please sketch one typical scenario, where IPsec is used today.

IPsec

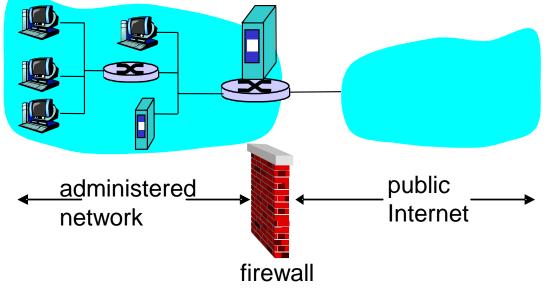
- Please sketch one typical scenario, where IPsec is used today.
 - VPN gateway at company or university. E.g.
 134.76.22.1 is the VPN Gateway for the GWDG

Q7

- What are the two main protocols used in IPsec and what is their primary difference with respect to security properties?
 - Authentication Header (AH): Ensures authentication and data integrity. No encryption!
 - Encapsulated Security Payload (ESP): Ensures authentication, data integrity and encryption.

Q7.a

- AH incompatible with NAT-traversal
- ESP compatible with NAT-traversal
- UDP Encapsulation


802.11i

- Who is handling the authentication information in an 802.11i scenario?
 - Using TLS-EAP (Extensible Authentication Protocol over Transport Layer Security) to contact an AAA (Authentication, Authorization, Accounting) Server

Firewalls

- What is the purpose of a firewall and what are filter rules?
 - Isolation of organization's internal network from internet!

Filter rules

- The firewall can be configured to only let certain packets pass. An administrator might be interested in setting up rules like:
 - No telnet connections to hosts behind the FW
 - Prevent outside machines to connect to inside machines, but still inside machines can connect to outsiders
 - Prevent web radios
 - Many more...

9 – Stateless & Stateful Firewalls

- Def A: a stateless firewall filters packets on a <u>per-packet basis</u>; the decision does not depend on previous packets and no state is saved on past packets
 - $_{\circ}$ Pro: simpler HW
 - Cons: cannot check TCP flows
- Def B: a stateful firewall filters packets on a per-flow basis. It tracks status of every TCP connection
 - Pro: check TCP flows
 - Cons: more complex HW

10 – Application Gateways

- Def: an Application Gateway can perform packet filtering on IP/TCP/UDP fields such as a firewall. Additionally, it can perform packet filtering based on application data.
 - Pro: more granular control compared to firewalls
 - Cons: an application gateway for each application, whereas firewalls are shared among applications

Exam in general

- o Time: 14:00-16:00 Feb. 6 2020
- Room: MN08
- Deadline in FlexNow!
- 90 minutes, no notes allowed
- No calculator needed, just a blue or black ballpen, paper will be provided
- We start at 14:15, be there at around 14:00
- Check out old exams on website

Exam hints

- No need to learn exact structure of packet (IP, TCP, UDP, ...) headers
- No need to perform RSA (hard without calculator anyway ;))
- Be prepared to execute a routing algorithm
- Exercise questions often similar to exam questions

The networking lab

- Put what you've learned in theory now into practice.
- 5 ECTS practical course with dedicated lab hardware
- Teamwork (teams of 2 students)
- Check our wiki for more details

Thank you

Any questions?

