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Supervised:
{(X1,1, X1,2) — Y1, (X2,1, X2,2) — Y2, (Xn,l,Xn,2) — yn}
Unsupervised: {(X171, X1’2), (X271, X2’2), ceey (X,,71, Xn’2)}
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Unsupervised: {(X171, X1’2), (X271, X2’2), ceey (X,,71, Xn’2)}
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k-means algorithm

Iteratively find k clusters in the data

Init Randomly choose k points as initial cluster centroids
Repeat :

— Assign samples to these cluster centroids conditioned on
distance

— Move cluster centroids to the center weight of the points
associated to them
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k-means algorithm

Init: k cluster centroids p;

chosen randomly

mvote.ugoe.de/282A

® .
+ o 7 °
00.
°
* % o ¢
.o +
°
Xy



Unsupervised

Unsupervised learning

k-means algorithm

Init:

Repeat:
1:

k cluster centroids u;
chosen randomly

assign samples to
centroids conditioned
on distance
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k-means algorithm

Init:

Repeat:

: assign samples to

G @
Cop(t+l) = %Zi:l x(7)

k cluster centroids u;
chosen randomly

centroids conditioned
on distance
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k-means algorithm

Init:

Repeat:

: assign samples to

G @
Cop(t+l) = %Zi:l x(7)

k cluster centroids u;
chosen randomly

centroids conditioned
on distance
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k-means algorithm

Init:

Repeat:

: assign samples to

G @
Cop(t+l) = %Zi:l x(7)

k cluster centroids u;
chosen randomly

centroids conditioned
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k-means algorithm

Init:

Repeat:

: assign samples to

G @
Cop(t+l) = %Zi:l x(7)

k cluster centroids u;
chosen randomly

centroids conditioned
on distance
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k-means algorithm

Init:

Repeat:

: assign samples to

G @
Cop(t+l) = %Zi:l x(7)

k cluster centroids u;
chosen randomly

centroids conditioned
on distance
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k-means algorithm

Init:

Repeat:

: assign samples to

G @
Cop(t+l) = %Zi:l x(7)

k cluster centroids u;
chosen randomly

centroids conditioned
on distance
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k-means algorithm
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How to randomly initialise the k-means algorithm

The k-means algorithms may compute different solutions for
different initial choice of cluster centroids

With respect to the overall distance of the samples to their
cluster centroids, k-means might run into local optima
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k-means algorithm
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How to randomly initialise the k-means algorithm

The k-means algorithms may compute different solutions for
different initial choice of cluster centroids

With respect to the overall distance of the samples to their
cluster centroids, k-means might run into local optima

Common choice of the initial k cluster centroids

Choose the initial k cluster centroids randomly from the set of
training samples
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k-means algorithm
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Introduction to self organising maps (SOM)

Proposed by Teuvo Kohonen'! e g deieds
— Model of the self-organisation of neural connections
— Maps high dimensional input to low dimensional (e.g. 2D)

output
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10/ 27
1Teuvo Kohonen, Self-Organizing Maps, Springer, 2001.



Introduction to self organising maps (SOM)

Relation to Neural Networks '

mvote.ugoe.de/2828

Similarity
o Weighted inputs mapped -
to vector of outputs

@ Considers neighbourhood
relation and ordering of Tnput vector xi:
output layer

@ Unsupervised

o Alternative learning and
updating

11/ 27
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Introduction to self organising maps

. . . . 1
Represent all points in a source space by points in a target spactrevsedzsz
Given a sequence of points in a sample space,

Create a mapping of these points into a target space that respects
the neighbourhood relation in the sample space

400
300
200

100
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SOM is a topology preserving lattice of predefined number of nodes
Represents topology of elements in input space.

Algorithm inherits self-organisation property
@ Able to produce organisation starting from total disorder.

@ Defines and preserves neighbourhood structure between nodes

Learning by two layer neural network
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- .
When a pattern ¢; is presented, each node (represented by outer
neurons) in the target space computes its activation ¢ va>

Most activated node y* and weights to its neighbours are updated
according to a learning rate p(t)

Wit +1) = wig(t) + () Aly — y* (@1 — wid())

A(+) defines a non-increasing neighbourhood function and |y — y*|
describes the distance of nodes in the neighbourhood
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SOM - Self organisation
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SOM - Definition
Condensed definition of SOM from Cottrell et al.2

Self organising maps

o Let | = {nf,... ,17‘_57} be a set of km-dimensional vectors that
are associated with nodes in a lattice.

1
mvote.ugoe.de/2828

@ Neighbourhood structure provided by symmetrical
neighbourhood function d : | x I — R which depends on the
distance between two nodes 7} and 7 € /.

@ State of the map at time t given by

n(t) = (m(®) m(0), .. ms ()

2M. Cottrell, J.C. Fort and G. Pages, Theoretical aspects of the SOM algorithm, Neurocomputing, pp. 16/ 27
119-138, vol 21, 1998.
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SOM - Definition

Self organising map algorithm

The SOM algorithm is recursively defined by

ic<v(t+1;,7ﬁ> = argmin{“v(t+1j—n;tH,n,-t En(t)},
mi(t+1) = —€td[lc( t—l—l,ﬁ) n,}

: (n,- (£} — (t+13> VI € .
In this formula, ic (v(t + 15,1%3) corresponds to the node in the

network that is closest to the input vector.

Parameter ¢; controls the adaptability.



SOM - Operational principle
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Input values v;(t) are to be mapped onto the target space



SOM - Operational principle
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Node with the lowest distance is associated with the input value:

ic (v(t + 1;,@) = argmin{ v(t+1) — n;(tj‘ ni(t) € n(t)}
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Nodes in the neighbourhood of the associated node are moved

closer to the input value
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SOM - Operational principle
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Nodes in the neighbourhood of the associated node are moved to

the input value
ni(t+1) = ni(t) —erd [ic <v(t + 13,@) ,ﬁ)}
-<m—v(t+13),\ﬂ?e/.
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SOM — Example application: TEA :
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SOM — Example application: TEA

inside, light off

outside,
moving

not moving

Stephan Sigg

Machine Learning and Pervasive Computing
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SOM - Remarks

SOM algorithm always converges?

Self OrganiEzing M_EESE
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Normalisation of input vectors might improve numerical accuracy

Not guaranteed that self-optimisation will always occur
(Dependent on choice of parameters)

Difficult to set parameters of the model since SOM is not

optimising any well-defined function®

If neighbourhood is chosen to be too small, the map will not be

ordered globally

3Y. Cheng, Neural Computation, 9(8), 1997.

4 . - . .
E. Erwin, K. Obermayer, K. Schulten: Self-organising maps: Ordering, convergence properties and energy 24/ 27

functions. Biological Cybernetics, 67, 47-55, 1992
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Problems of SOMs
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400000

Map created as target space might have several orientations

One part of the map might follow one orientation, while other

parts are following other orientations

25 /21
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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