
Advanced Computer Networks

 ― Cloud Computing (I)

June 13, 2013

Prof. Xiaoming Fu, MSc. Yuan Zhang

Acknowledgement: Revised based on Anthony D. Joseph’s slides

• Shared pool of configurable computing resources

• On-demand network access

• Provisioned by the Service Provider

What is Cloud Computing

2 Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim
Grance

Cloud Computing Characteristics

Common Characteristics:

Low Cost Software

Virtualization Service Orientation

Advanced Security

Homogeneity

Massive Scale Resilient Computing

Geographic Distribution

Essential Characteristics:

Resource Pooling

Broad Network Access Rapid Elasticity

Measured Service

On Demand Self-Service

3

Cloud Service Models

4

Software as a

Service (SaaS)

Platform as a

Service (PaaS)

Infrastructure as a

Service (IaaS)

Google
App
Engine

SalesForce CRM

LotusLive

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim
Grance

http://aws.amazon.com/
http://www.rackspace.com/index.php

Virtualization

• Virtual workspaces:

– An abstraction of an execution environment that can be made
dynamically available to authorized clients by using well-defined
protocols,

– Resource quota (e.g. CPU, memory share),

– Software configuration (e.g. OS, provided services).

• Implement on Virtual Machines (VMs):

– Abstraction of a physical host machine,

– Hypervisor intercepts and emulates instructions from VMs, and
allows management of VMs,

– VMWare, Xen, etc.

• Provide infrastructure API:

– Plug-ins to hardware/support infrastructures Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack
5

http://www.vmware.com/virtualization/

Virtual Machines

• VM technology allows multiple virtual machines to run
on a single physical machine.

6

Hardware

Virtual Machine Monitor (VMM) / Hypervisor

Guest OS
(Linux)

Guest OS
(NetBSD)

Guest OS
(Windows)

VM VM VM

App App App App App

Xen

VMWare

UML

Denali

etc.

Performance: Para-virtualization (e.g. Xen) is very close to raw physical
performance!
* Para-virtualization means a guest OS is recompiled prior to installation inside a VM

Modes of Clouds

Public Cloud

• Computing infrastructure is hosted by cloud vendor at the vendors premises.

• and can be shared by various organizations.

• E.g. : Amazon, Google, Microsoft, Sales force

Private Cloud

• The computing infrastructure is dedicated to a particular organization and not shared
with other organizations.

• more expensive and more secure when compare to public cloud.

• E.g. : HP data center, IBM, Sun, Oracle, 3tera

Hybrid Cloud

• Organizations may host critical applications on private clouds.

• where as relatively less security concerns on public cloud.

• usage of both public and private together is called hybrid cloud.

7

Background of Cloud Computing

• 1990: Heyday of parallel computing, multi-

processors
– 52% growth in performance per year!

• 2002: The thermal wall
– Speed (frequency) peaks,

but transistors keep

shrinking

• The Multicore revolution
– 15-20 years later than

predicted, we have hit

the performance wall

At the same time…

• Amount of stored data is exploding…

Data Deluge

• Billions of users connected through the net

– WWW, FB, twitter, cell phones, …

– 80% of the data on FB was produced last year

• Storage getting cheaper

– Store more data!

Solving the Impedance Mismatch

• Computers not getting faster,

and we are drowning in data
– How to resolve the dilemma?

• Solution adopted by web-scale

companies
– Go massively distributed

and parallel

Distributed Systems

• Distributed Systems/Computing

– Loosely coupled set of computers, communicating through

message passing, solving a common goal

• Distributed computing is challenging

– Dealing with partial failures

– Dealing with asynchrony

• Distributed Computing versus Parallel Computing?

– distributed computing=parallel computing + partial failures

Dealing with Distribution

• We have seen several of the tools that help with

distributed programming

– Message Passing Interface (MPI)

– Distributed Shared Memory (DSM)

– Remote Procedure Calls (RPC)

• But, distributed programming is still very hard

– Programming for scale, fault-tolerance, consistency, …

Distributed Systems

• Distributed Systems/Computing

– Loosely coupled set of computers, communicating through

message passing, solving a common goal

• Distributed computing is challenging

– Dealing with partial failures (examples?)

– Dealing with asynchrony (examples?)

• Distributed Computing versus Parallel Computing?

– distributed computing=parallel computing + partial failures

14

Dealing with Distributed Programming

• We have seen several of the tools that help with

distributed programming

– Message Passing Interface (MPI)

– Distributed Shared Memory (DSM)

– Remote Procedure Calls (RPC)

• But, distributed programming is still very hard

– Programming for scale, fault-tolerance, consistency, …

15

The Datacenter is the new Computer

• “Program” == Web search, email,
map/GIS, …

• “Computer” == 10,000’s
computers, storage, network

• Warehouse-sized facilities and
workloads

• Built from less reliable
components than traditional
datacenters

16

Datacenter/Cloud Operating System

• Data sharing

– Google File System, key/value stores

• Programming Abstractions

– Google MapReduce, PIG, Hive, Spark

• Multiplexing of resources

– Apache projects: Mesos, YARN (MapReduce v2), ZooKeeper,

BookKeeper, …

17

Google Cloud Infrastructure

• Google File System (GFS), 2003

– Distributed File System for entire
cluster

– Single namespace

• Google MapReduce (MR), 2004

– Runs queries/jobs on data

– Manages work distribution & fault-
tolerance

– Colocated with file system

• Apache open source versions Hadoop DFS and Hadoop MR
18

GFS/Hadoop DFS Insights

• Petabyte storage

– Files split into large blocks (128 MB) and replicated across several

nodes

– Big blocks allow high throughput sequential reads/writes

• Data striped on hundreds/thousands of servers

– Scan 100 TB on 1 node @ 50 MB/s = 24 days

– Scan on 1000-node cluster = 35 minutes

19

GFS/HDFS Insights (2)

• Failures will be the norm

– Mean time between failures for 1 node = 3 years

– Mean time between failures for 1000 nodes = 1 day

• Use commodity hardware

– Failures are the norm anyway, buy cheaper hardware

• No complicated consistency models

– Single writer, append-only data

20

MapReduce Model

• Data type: key-value records

• Map function:

(Kin, Vin) list(Kinter, Vinter)

• Group all identical Kinter values and pass to reducer

• Reduce function:

(Kinter, list(Vinter)) list(Kout, Vout)

Example: Word Count

Input: key is filename, value is a line in input file

def mapper(file, line):
 foreach word in line.split():
 output(word, 1)

Intermediate: key is a word, value is 1

def reducer(key, values):
 output(key, sum(values))

Word Count Execution

the quick
brown

fox

the fox
ate the
mouse

how now
brown

cow

Reduce

Reduce

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Map

Map

Map

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

k: brown, v: [1,1]
k: fox, v: [1,1]
k: how, v: [1]
k: now, v: [1]
k: the v: [1,1,1]

k: ate v: [1]
k: cow, v: [1]
k: mouse, v: [1]
k: quick, v: [1]

MapReduce Insights

• Restricted key-value model

– Same fine-grained operation (Map & Reduce) repeated on big

data

– Operations must be deterministic

– Operations must be idempotent/no side effects

• Idempotent: means an operation can be applied multiple times
without changing the result beyond the initial application

– Only communication is through the shuffle

– Operation (Map & Reduce) output saved (on disk)

24

What is MapReduce Used For?

• At Google:
– Index building for Google Search

– Article clustering for Google News

– Statistical machine translation

• At Yahoo!:
– Index building for Yahoo! Search

– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining

– Ad optimization

– Spam detection

25

MapReduce Pros

• Distribution is completely transparent
– Not a single line of distributed programming (ease, correctness)

• Automatic fault-tolerance
– Determinism enables running failed tasks somewhere else again

– Saved intermediate data enables just re-running failed reducers

• Automatic scaling
– As operations as side-effect free, they can be distributed to any number

of machines dynamically

• Automatic load-balancing
– Move tasks and speculatively execute duplicate copies of slow tasks

(stragglers)

26

MapReduce Cons

• Restricted programming model

– Not always natural to express problems in this model

– Low-level coding necessary

– Little support for iterative jobs (lots of disk access)

– High-latency (batch processing)

• Addressed by follow-up research

– Pig and Hive for high-level coding

– Spark for iterative and low-latency jobs

27

Pig

• High-level language:

– Expresses sequences of MapReduce jobs

– Provides relational (SQL) operators

(JOIN, GROUP BY, etc)

– Easy to plug in Java functions

• Started at Yahoo! Research

– Runs about 50% of Yahoo!’s jobs

28

Hive

• Relational database built on Hadoop

– Maintains table schemas

– SQL-like query language (which can also call Hadoop Streaming

scripts)

– Supports table partitioning,

complex data types, sampling,

some query optimization

• Developed at Facebook

– Used for many Facebook jobs

29

Spark Motivation

Complex jobs, interactive queries and online processing all

need one thing that MapReduce lacks:

Efficient primitives for data sharing

S
ta

g
e
 1

S
ta

g
e
 2

S
ta

g
e
 3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

J
o
b
 1

J
o
b
 2

…

Stream processing

30

Spark Motivation

Complex jobs, interactive queries and online processing all

need one thing that MapReduce lacks:

Efficient primitives for data sharing

S
ta

g
e
 1

S
ta

g
e
 2

S
ta

g
e
 3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

J
o
b
 1

J
o
b
 2

…

Stream processing

Problem: in MapReduce, the only way to share

data across jobs is using stable storage

(e.g. file system) slow!

31

Examples

iter. 1 iter. 2 . .

.
Input

HDFS

read

HDFS

write

HDFS

read

HDFS

write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS

read

Opportunity: DRAM is getting cheaper use

main memory for intermediate

results instead of disks

32

iter. 1 iter. 2 . .

.
Input

Goal: In-Memory Data Sharing

Distributed

memory

Input

query 1

query 2

query 3

. . .

one-time

processing

10-100× faster than network and disk 33

Datacenter Scheduling Problem

• Rapid innovation in datacenter computing frameworks

• No single framework optimal for all applications

• Want to run multiple frameworks in a single datacenter

– …to maximize utilization

– …to share data between frameworks

Pig

Dryad

Pregel

Percolator

CIEL

34

Hadoop

Pregel

MPI
Shared cluster

Today: static partitioning Dynamic sharing

Where We Want to Go

35

Solution: Apache Mesos

• Mesos is a common resource sharing layer over which
diverse frameworks can run

• Run multiple instances of the same framework
– Isolate production and experimental jobs

– Run multiple versions of the framework concurrently

• Build specialized frameworks targeting particular problem
domains
– Better performance than general-purpose abstractions

Mesos

Node Node Node Node

Hadoop Pregel
…

Node Node

Hadoop

Node Node

Pregel

…

36

Mesos Goals

• High utilization of resources

• Support diverse frameworks (current & future)

• Scalability to 10,000’s of nodes

• Reliability in face of failures

http://incubator.apache.org/mesos/

Resulting design: Small microkernel-like

core that pushes scheduling

logic to frameworks
37

http://incubator.apache.org/mesos/

Mesos Design Elements

•Fine-grained sharing:

– Allocation at the level of tasks within a job

– Improves utilization, latency, and data locality

•Resource offers:

– Simple, scalable application-controlled scheduling mechanism

38

Element 1: Fine-Grained Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

+ Improved utilization, responsiveness, data locality

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1 Fw. 3

Fw. 3 Fw. 2 Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2 Fw. 3

Fw. 1

Fw. 1 Fw. 2 Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

39

Element 2: Resource Offers

•Option: Global scheduler

– Frameworks express needs in a specification language, global

scheduler matches them to resources

+ Can make optimal decisions

 – Complex: language must support all framework

needs

– Difficult to scale and to make robust

– Future frameworks may have unanticipated needs

40

Element 2: Resource Offers

• Mesos: Resource offers

– Offer available resources to frameworks, let them pick which resources

to use and which tasks to launch

+ Keeps Mesos simple, lets it support future frameworks

- Decentralized decisions might not be optimal

41

Mesos Architecture

MPI job

MPI

scheduler

Hadoop job

Hadoop

scheduler

Allocation

module

Mesos

master

Mesos slave

MPI

executor

Mesos slave

MPI

executor

task task

Resource

offer

Pick framework to

offer resources to

42

Mesos Architecture

MPI job

MPI

scheduler

Hadoop job

Hadoop

scheduler

Allocation

module

Mesos

master

Mesos slave

MPI

executor

Mesos slave

MPI

executor

task task

Resource

offer

Pick framework to

offer resources to

 Resource offer =

 list of (node, availableResources)

 E.g. { (node1, <2 CPUs, 4 GB>),

 (node2, <3 CPUs, 2 GB>) }

43

Mesos Architecture

MPI job

MPI

scheduler

Hadoop job

Hadoop

scheduler

Allocation

module

Mesos

master

Mesos slave

MPI

executor

Hadoop

executor

Mesos slave

MPI

executor

task task

Pick framework to

offer resources to

task
Framework-specific

scheduling

Resource

offer

Launches and

isolates executors

44

Summary

• Cloud computing/datacenters are the new computer

– Emerging “Datacenter/Cloud Operating System” appearing

• Pieces of the DC/Cloud OS

– High-throughput filesystems (GFS/HDFS)

– Job frameworks (MapReduce, Spark, Pregel)

– High-level query languages (Pig, Hive)

– Cluster scheduling (Apache Mesos)

45

