Exercise 2

Florian Tegeler

CRC checksums

- CRC checksums: Please calculate the CRC R of $D=010111001010011111101111$. Please use the 4 bit generator $G=1101$.
- Please note, R is always of polynom-length (=if G has 4 bit, R is 3 bit long).

$$
G=1 \cdot x^{3}+1 \cdot x^{2}+0 \cdot x^{1}+1 \cdot x^{0}
$$

CRC Checksums

just lines to help: do not loose the correct column!

CRC Checksums

$$
\begin{gathered}
01011100101001111|110111| 1000 \\
\underline{1011}
\end{gathered}
$$

Identifiers

- Why do we need multiple identifiers for one entity such as IP-addresses, MAC addresses etc.?
- Answer: Multiple layers, transparent, nevertheless currently development to split e.g. ID and topological location

ARP

- Please look into the Ethernet frames using wireshark and, in the best case scenario, observe an ARP request. What happens, if you want to connect to a host that is not in your local area network?
- Was a bit a trick question ;) Remember: ARP is layer 2, routers are layer 3. That is the job of the network layer, to connect different "broadcast domains" where ARP works.
- Answer: By having the router R as a default route in host A, host B is contacted via R so R 's MAC is looked up with ARP! Remember the example page.
- A creates IP datagram with source A, destination B
- A uses ARP to get R's MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
- A's NIC sends frame
- R's NIC receives frame

This is a really important example - make sure you understand!

- R removes IP datagram from Ethernet frame, sees its destined to B
- R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram sends to B

2: Data Link Layer

```
Eile Edit View Go Capture Analyze Statistics Help
```


Eilter: $\begin{aligned} & \operatorname{arp}\end{aligned}$ Expression... Clear Apply

（1）Frame 21 （ 60 bytes on wire， 60 bytes captured）

田 Ethernet II，Src：Fuji－Xer＿3f：b9：d4（08：00：37：3f：b9：d4），Dst：Broadcast（ff：ff：ff：ff：ff：ff）
田 Address Resolution Protocol（request）

```
00000
0020 00 00 00 00 00 00 ac 17 ff fe ff ff ff ff ff ff
0030 ff ff
```

