Content-Centric Network

Advanced Computer Networks Summer Semester 2012

Introduction to CCN

• What?

o What is Content-Centric Network (CCN)?

• Why?

 $_{\circ}~$ Why do we need CCN?

• How?

• How CCN works?

o Problems?

 $_{\circ}~$ Is there any problem in the design?

What is CCN?

Content-centric networking (also content-based networking, data-oriented networking or named data networking) is an alternative approach to the architecture of computer networks. Its founding principle is that a communication network should allow a user to focus on the data he or she needs, rather than having to reference a specific, physical location where that data is to be retrieved from. [wiki]

I need data: "/ugoe/networks/acn/ACN_CCN.pdf"

> I need to communicate with: "134.76.10.46:80"

Related papers/projects

- TRIAD: a Scalable Deployable NAT-based Internet Architecture
 - Stanford 2000, TRIAD project
- Data Oriented Networking
 - 。 IETF 2002
- XTreeNet: A Scalable Unified Overlay Network for XML Content Access and Distribution
 - 。 WWW 2007
- A Data-Oriented (and Beyond) Network Architecture [DONA]
 - SIGCOMM 2007
- Networking Named Content
 - CoNext 2009
 - Park 2009, CCNx / NDN project

Why CCN?

- Internet is designed in 1960s
 - Main purpose: resource sharing
 Computer talk to computer via unique ID (IP)

Why CCN?

- Internet is designed in 1960s
 - Main purpose: resource sharing Computer talk to computer via unique ID (IP)
 Please calculate this for me...
 Here is the result...
 Terminal
- The 'network' will (has) become increasingly Information-centric
 - Information of all types becoming electronic and network accessible
 - Access of information based on content of interest, instead of location

mail WWW phone	T T	browser chat
SMTP HTTP RTP		File Stream
TCP UDP	Individual apps	Security
IP	Every node	Content
ethernet PPP	Individual links	Strategy
CSMA async sonet		IP UDP P2P BCast
copper fiber radio		copper fiber radio
		/

Solutions to the mismatch

• CDN

Problems:

- Bottleneck: bandwidth, CPU, ...
- Maintenance
- Packet-level caching

Solutions to the mismatch

Solutions to the mismatch

IP/overlay multicast

Problems:

- Not well supported
- Async-data query
 - VOD

Objective?

- Content (name) Centric
- Aware of network topology
- Fine-grained caching
- o Reliability
- Security

Named Data Networks (NDN)

- CCN moves the universal component of the network stack from IP to chunks of named content
- Hierarchical human-readable ContentName
 - E.g. /conf/papers/NDN.pdf
- o Interest & Data packets
 - Query/Response model

Content Name (Name Tree)

• Sequencing

- _s0, _s1, _s2 are the segments of the file
- Use relations to get relative segments
 - E.g. previous, next, RightmostChild, LeftmostRightChild, ...

Content-based Security

Securing data rather than securing channel

Contextual trust

- In the context of particular content
- $_{\circ}~$ In the purpose for which it will be used

• A new forwarding engine (router) needed:

• Processing a request

• Processing a request

Processing a request

How CCN Works Processing a request

PIT of R₆

Processing a request

N-E-T»

WORK'S

How CCN Works Processing a request

How CCN Works Processing a request

How CCN Works Processing a request – Forwarding Data

Processing a request – Forwarding Data

PIT of R₃

Processing a request – Forwarding Data

Comput N-E • Processing a request – Forwarding Data

WORKS

Processing additional requests

How CCN Works Processing additional requests

N-E

Features

- Packet (data chunk) identified by its unique name
 - Packet level caching
- Routing on names
 - Have full knowledge of network topology
 - Longest prefix match (similar to IP forwarding)
- Flow balancing
 - Query-response model of data dissemination

Problems

- CCN fits well with current data access requirement
- But it is a clean-slate design
 - Requires the routers in the whole network be replaced
- And, what will happen if the network is replaced by CCN forwarding engines?
 - FIB size?
 - Cache efficiency?
 - Underlay resilience?
 - Live streaming / highly interactive communication?
 - Other usage (IPTV? Cloud? Data Center?...)

Barriers between CCN and time-sensitive comm.

- Content-Oriented Publish-Subscribe System (COPSS)
 - Information Overload Scale: Producers and Consumers face challenges
 - Large number of producers (publishers; data sources)
 - Even larger number of consumers (subscribers, users querying/looking for content)
 - Tremendous number of information producers makes it difficult for a consumer to know where to find relevant information
 - Significant challenge: "whom and what to ask" & "whom and what to tell"
 - A network-based Information Dissemination and Retrieval environment
 - Obtain "information" of interest by asking the network to find it
 - Tell the network to deliver "information" of interest
 - Ask the network as to what "information" I should be interested in

- Content-Oriented Publish-Subscribe System (COPSS)
 - Push enabled dissemination
 - Subscribers receive information in a timely manner
 - Decouple publishers and subscribers
 - Content-centric subscription and publication of information
 - o Scalability
 - Load on the network & publisher/server grow sub-linearly with increasing subscribers
 - Efficiency
 - Utilize network and server resources efficiently
 - Incremental deployment
 - Beneficial for early adopters and seamless migration from an IP dominated environment

- Content-Oriented Publish-Subscribe System (COPSS)
 - Support hierarchies and context in naming content
 - Richer identification of content
 - Allows aggregation
 - Allows grouping/subscription at various levels
 - Support two-step dissemination, enabling:
 - Policy control
 - Efficiency
 - Subscriber offline support
 - Asynchronous delivery of information

COPSS Architecture

- Built on top of the NDN framework
 - minimal changes, significant architectural and functional improvement

COPSS Communication

- Basic one-step communication
 - Select rendezvous node (like CBT multicast's core) and propagate info

COPSS Communication

- Basic one-step communication
 - Subscribe: C₁ -> "/multicast/sports"

COPSS Communication Basic one-step communication

Subscribe: C₁ -> "/multicast/sports"

COPSS Communication Basic one-step communication

 $_{\circ}$ Subscribe: C₂ -> "/multicast/sports/football"

COPSS Communication

- Basic one-step communication
 - Subscribe: C₂ -> "/multicast/sports/football"

COPSS Communication Basic one-step communication

Publish: P -> "/multicast/sports/football"

COPSS communication

- Two-step communication
 - $_{\circ}~$ Publisher multicast snippet with content ID
 - Subscriber query for data if they are interested in the snippet
- o Why?
 - Save network traffic
 - A subscriber of a topic is not necessarily interested in every data in that topic
 - Publisher policy control

COPSS communication

- Further Issues
 - Incremental deployment
 - Security
 - $_{\circ}$ Spam
 - $_{\circ}$ Other usage

0 ...

