Advanced Computer Networks
— Cloud Computing (I)

June 13, 2013

Prof. Xiaoming Fu, MSc. Yuan Zhang

Acknowledgement: Revised based on Anthony D. Joseph'’s slides

T GEORG-AUGUST-UNIVERSITAT
N E .o \ d
GOTTINGEN \&

WORKS

What is Cloud Computing @

« Shared pool of configurable computing resources
« On-demand network access
« Provisioned by the Service Provider

Cloud Computing Characteristics

Common Characteristics:

Massive Scale Resilient Computing

Homogeneity Geographic Distribution

Virtualization Service Orientation
Low Cost Software Advanced Security

Essential Characteristics:

On Demand Self-Service

Broad Network Access Rapid Elasticity

Resource Pooling Measured Service

Cloud Service Models \

Software as a Platform as a
Service (SaaS) Service (PaaS)

Service (laaS)

Infrastructure as a

Cloud Infrastructure Cloud Infrastructure Cloud Infrastructure
laaS Software as a Service
SalesForce CRM 2
PaasS PaaS (SBEIS)
LotusLive SaaS SEEE Saas Prqwdgrs
Applications
Cloud Infrastructure Cloud Infrastructure
Google |
g9 laaS Platform as a Service (PaaS)
ADD PaaS PaaS Deol
My |
& Windons Azure eploy customer
T FitoeNat il created Applications

Cloud Infrastructure

amazon aas
webservices"

Infrastructure as a Service (laaS)

Rent Processing, storage, N/W
@mckspace_,_ capacity & computing resources

HOSTING

http://aws.amazon.com/
http://www.rackspace.com/index.php

Virtualization N ‘

http://www.vmware.com/virtualization/
 Virtual workspaces:

— An abstraction of an execution environment that can be made
dynamically available to authorized clients by using well-defined
protocols,

— Resource quota (e.g. CPU, memory share),
— Software configuration (e.g. OS, provided services).

« Implement on Virtual Machines (VMs):
— Abstraction of a physical host machine,
— Hypervisor intercepts and emulates instructions from VMs, and

allows management of VMs, Ao | Ao |[App |

— VMWare, Xen, etc. " os |[os |[os |

 Provide infrastructure API: ~ Hypervisor

— Plug-ins to hardware/support infrastructures Hardware

Virtualized Stack
5

Virtual Machines

G

« VM technology allows multiple virtual machines to run
on a single physical machine.

App

App

App

App

App

Guest
(Windo

oS
ws)

VM

VM

VM

Virtual Machine Monitor (VMM) / Hypervisor

Xen
VMWare
UML

Denali
etc.

Performance. Para-virtualization (e.g. Xen) is very close to raw physical
performancel
* Para-virtualization means a guest OS is recompiled prior to installation inside a VM

Modes of Clouds \AZ ‘

! 233

Public Cloud

« Computing infrastructure is hosted by cloud vendor at the vendors premises.
« and can be shared by various organizations.

« E.g.: Amazon, Google, Microsoft, Sales force

Private Cloud

« The computing infrastructure is dedicated to a particular organization and not shared
with other organizations.

* more expensive and more secure when compare to public cloud.
« E.g.: HP data center, IBM, Sun, Oracle, 3tera

Hybrid Cloud

« Organizations may host critical applications on private clouds.
« where as relatively less security concerns on public cloud.

« usage of both public and private together is called hybrid cloud.

=
[===}

Background of Cloud Computing \

« 1990: Heyday of parallel computing, multi-

Processors
— 52% growth in performance per year!
« 2002: The thermal wall 2

— Speed (frequency) peaks,
but transistors keep
shrinking

« The Multicore revolution

— 15-20 years later than
predicted, we have hit
the performance wall

-

[
]
]

MIPS/CPU clock speed

-
(=)
]

At the same time...

« Amount of stored data is exploding...

Economist [{ishetisin

assisuss sl ihsasts !”"lu ."!}
The data deluge

. [

Competing on

nature Analytms

Mmhm

SCIENCE IN THE
PETABYTEERA

—

Data Deluge \AZ J

 Billions of users connected through the net
— WWW, FB, twitter, cell phones, ...
— 80% of the data on FB was produced last year

« Storage getting cheaper
— Store more datal!

10000

1000 |

100 F

10 F

Capacity (GE>

(001 L L L .
1980-Jan 1985-Jan 1990-lan 1995-lan 2000-1an 2005-Jan 2010-Ja

Year

Solving the Impedance Mismatch @J

« Computers not getting faster,
and we are drowning in data
— How to resolve the dilemma?
 Solution adopted by web-scale

companies

— Go massively distributed
and parallel

—

Distributed Systems \

« Distributed Systems/Computing

— Loosely coupled set of computers, communicating through
message passing, solving a common goal

 Distributed computing is challenging
— Dealing with partial failures
— Dealing with asynchrony

 Distributed Computing versus Parallel Computing?
— distributed computing=parallel computing + partial failures

Dealing with Distribution

 We have seen several of the tools that help with
distributed programming
— Message Passing Interface (MPI)
— Distributed Shared Memory (DSM)
— Remote Procedure Calls (RPC)

« But, distributed programming is still very hard

— Programming for scale, fault-tolerance, consistency, ...

g

—

Distributed Systems \

« Distributed Systems/Computing

— Loosely coupled set of computers, communicating through
message passing, solving a common goal

 Distributed computing is challenging
— Dealing with partial failures (examples?)
— Dealing with asynchrony (examples?)

 Distributed Computing versus Parallel Computing?
— distributed computing=parallel computing + partial failures

14

Dealing with Distributed Programming

 We have seen several of the tools that help with
distributed programming
— Message Passing Interface (MPI)
— Distributed Shared Memory (DSM)
— Remote Procedure Calls (RPC)

« But, distributed programming is still very hard

— Programming for scale, fault-tolerance, consistency, ...

—

15

The Datacenter is the new Computer @J

* “Program” == Web search, emall,
map/GIS, ...

The Datacenter

as a Computer * “Computer”==10,000’s

An Introduction to the Design com pute IS, Storage’ network

of Warehouse-Scale Machines

Luiz Andre Barroso . T

Urs Holzle Warehouse-sized facilities and
workloads

 Built from less reliable
SYNTHESIS LECTURES ON components than traditional

COMPUTER ARCHITECTURE

R datacenters

16

Datacenter/Cloud Operating System

—
~

~

vl

« Data sharing
— Google File System, key/value stores

* Programming Abstractions
— Google MapReduce, PIG, Hive, Spark

« Multiplexing of resources

— Apache projects: Mesos, YARN (MapReduce v2), ZooKeeper,
BookKeeper, ...

17

Google Cloud

Infrastructure

« Google File System (GFS), 2003

— Distributed F

ile System for entire

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

cluster
— Single namespace

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
datavintensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance Lo a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect 2 marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional cholees and explose rad-
ically different design points.

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform

1. INTRODUCTION

We have designed and Implemented the Geogle File Sys-
tom (GFS) to meet the rapidly growing demands of Google's
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability, However, its design
has been driven by key observations of our application work-
loads and technological cnvironment, both current and an-
ticipated, that reficct a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choiees and explored radically different points n the
design space.

First, component failures are the norm rather than the
exception. The fle system consists of hundreds or even
thousands of storage machines built from inexpensive com-

« Google MapReduce (MR), 2004

— Runs queries/jobs on data

Simplified Data Pr: ing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

— Manages work distribution & fault- s s

tolerance

— Colocated with file system

Abstract

MapReduce is a programming model and an associ-
sted implementation for processing and generating large
data sets. Users specify a map function that processes 2
key/value pairto generate a set of ey/value

given day, ete. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have 10 be distributed across
hundreds or thousands of machines in order to finish in
2 reasonzble amount of time. The issues of how to par-
4)

pairs, and a reduece function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed ona large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input deta, scheduling the pro-

lize the distribute the data, and handle
fuilures conspire to obscure the original simple compu-
tation with large amounts of complex code o deal with
these issues.

As & reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in 4 librarv. Our abstraction is in-

« Apache open source versions Hadoop DFS and Hadoop MR

18

e
-
w
e\
[===y

GFS/Hadoop DFS Insights

- Petabyte storage

— Files split into large blocks (128 MB) and replicated across several
nodes

— Big blocks allow high throughput sequential reads/writes

« Data striped on hundreds/thousands of servers
— Scan 100 TB on 1 node @ 50 MB/s = 24 days
— Scan on 1000-node cluster = 35 minutes

19

GFS/HDFES Insights (2) 1

e Failures will be the norm
— Mean time between failures for 1 node = 3 years
— Mean time between failures for 1000 nodes =1 day

e Use commodity hardware
— Fallures are the norm anyway, buy cheaper hardware

* No complicated consistency models
— Single writer, append-only data

—
~

~

vl

20

MapReduce Model @J

e Data type: key-value records

* Map function:

(K., V.,) = list(K,

1n/ inter’/ mter)

e Group all identical K., values and pass to reducer

inter

e Reduce function:
(K liSt(Vinter)) 9 liSt(1<ou’c/ Vout)

inter’/

Example: Word Count @‘

Input: key is filename, value is a line in input file
def mapper(file, line):
foreach word in line.split():
output(word, 1)

Intermediate: key is a word, value is 1

def reducer(key, values):
output(key, sum(values))

Word Count Execution

Input

the quick
brown
fox

the fox
ate the
mouse

how now
brown
COW

M fox, 1

Map Shuffle & Sort Reduce
k: brown, v:[1,1]

the, 1 k: fox, v:[1,1]

brown, 1 k: how, v:[1]

k: now, v:[1]
k: the v:[1,1,1]

quick, 1
Reduce
the, 1
fox, 1
k: ate v: [1]

k: cow, v:[1]
k: mouse, v:[1]
k: quick, v:[1]

cow, 1 NEAUCE

Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce Insights

* Restricted key-value model

—
~

~

vl

Same fine-grained operation (Map & Reduce) repeated on big

data
Operations must be deterministic

Operations must be idempotent/no side effects

- ldempotent: means an operation can be applied multiple times
without changing the result beyond the initial application

Only communication is through the shuffle
Operation (Map & Reduce) output saved (on disk)

24

What is MapReduce Used For?

« At Google:

— Index building for Google Search
— Atrticle clustering for Google News
— Statistical machine translation

« At Yahoo!:

— Index building for Yahoo! Search
— Spam detection for Yahoo! Mail

« At Facebook:
— Data mining
— Ad optimization
— Spam detection

25

MapReduce Pros @‘

Distribution is completely transparent
— Not a single line of distributed programming (ease, correctness)

Automatic fault-tolerance
— Determinism enables running failed tasks somewhere else again
— Saved intermediate data enables just re-running failed reducers

Automatic scaling

— As operations as side-effect free, they can be distributed to any number
of machines dynamically

Automatic load-balancing

— Move tasks and speculatively execute duplicate copies of slow tasks
(stragglers)

26

MapReduce Cons

« Restricted programming model
— Not always natural to express problems in this model
— Low-level coding necessary
— Little support for iterative jobs (lots of disk access)
— High-latency (batch processing)

« Addressed by follow-up research
— Pig and Hive for high-level coding
— Spark for iterative and low-latency jobs

—
~

~

vl

27

L=
\S

Pig

« High-level language:
— Expresses sequences of MapReduce jobs

— Provides relational (SQL) operators
(JOIN, GROUP BY, etc)

— Easy to plug in Java functions

« Started at Yahoo! Research
— Runs about 50% of Yahoo!’s jobs

,
[===}

Hive \

« Relational database built on Hadoop

— Maintains table schemas
— SQL-like query language (which can also call Hadoop Streaming
Scripts)

— Supports table partitioning,
complex data types, sampling,
some guery optimization

* Developed at Facebook
— Used for many Facebook jobs

Spark Motivation J

Complex jobs, interactive queries and online processing all
need one thing that MapReduce lacks:

Efficient primitives for data sharing

Ty

I N ﬁ

Iterative job Interactive mining Stream processing

30

Spark Motivation @J

Complex jobs, interactive queries and online processing all
need one thing that MapReduce lacks:

Efficient primitives for data sharing

A e

" Problem: in MapReduce, the only way to share
data across jobs Is using stable storage

(e.g. file system) =» slow!)
Iterative job Interactive mining Stream processing

31

=
[===}

Examples S

HDFS HDFS HDFS HDFS

E jread WritT jread WritT j
Input
HDFS Jucly reSUIt 1
read

"Opportunity: DRAM is getting cheaper & use
main memory for intermediate

results instead of disks
N

32

Goal: In-Memory Data Sharing

1 233

Input

one-time
processin

Distributed
memory

Input

10-100 X faster than network and disk 3}

Datacenter Scheduling Problem

« Rapid innovation in datacenter computing frameworks
* No single framework optimal for all applications

—
~

~

vl

« Want to run multiple frameworks in a single datacenter
— ...to maximize utilization

— ...to share data between frameworks

Channels M

Dryad

Google

Percolator

S distributed stream

computing platform

=P
L2y

B

A

-

| |

S

34

Where We Want to Go @I

Today: static partitioning Dynamic sharing

0%

4 33%
17%
0%

4 33%
17%
0%

- 33%
2= 179 MA
=3 00/0

Shared cluster

35

Solution: Apache Mesos @I

« Mesos is a common resource sharing layer over which
diverse frameworks can run

Hadoop Pregel

* Run multiple instances of the same framework
— Isolate production and experimental jobs
— Run multiple versions of the framework concurrently

« Build specialized frameworks targeting particular problem
domains

— Better performance than general-purpose abstractions

36

Mesos Goals @J

High utilization of resources

Support diverse frameworks (current & future)
Scalability to 10,000’s of nodes

Reliability in face of failures

http://incubator.apache.org/mesos/

Resulting design: Small microkernel-like
core that pushes scheduling
logic to frameworks

http://incubator.apache.org/mesos/

Mesos Design Elements

*Fine-grained sharing:
— Allocation at the level of tasks within a job
— Improves utilization, latency, and data locality

*Resource offers:
— Simple, scalable application-controlled scheduling mechanism

!
3
w
e\ |
[===y

38

Element 1: Fine-Grained Sharing @J

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

Framework 3

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

+ Improved utilization, responsiveness, data localjty

Element 2: Resource Offers @J

*Option: Global scheduler
— Frameworks express needs in a specification language, global

scheduler matches them to resources
+ Can make optimal decisions

— Complex: language must support all framework
needs

— Difficult to scale and to make robust
— Future frameworks may have unanticipated needs

40

)
(-
0
=
O
o
O
LS
S
O
)
O
nd

Element 2

 Mesos: Resource offers

— Offer available resources to frameworks, let them pick which resources

to use and which tasks to launch

T Keeps Mesos simple, lets it support future frameworks

Decentralized decisions might not be optimal

P
....

ey

i
- |#&8 BB 88 <
an Aaae 88 N
2} R
&W mbmﬂ Hﬂﬁ m
@ad Fob Al T
N |888 gae B8O A
BOE c.. BBA O o
~ (888 ps BE8 o
B88 ya. 866 0O =
o |@aa aae
gog Do@ aga O ke
= e ﬁ fafil il
808 ... 888]
E_.I
BAE S 886 T
1 588 pam BE8
B8E pam G886 O
@08 pawn 086
B8 F4w aae| 02
O Ees pam 68
BBE gag BB &)
N |mas Ada
888 gas 088 o
M |eee gas ass
B8 gas OBB o
o] |ee aﬂﬁ ity
|88 mas 6a
Y __.w& ddd @6 -
ﬂ__ | pag 86| &)
| ey e |
88 sas & | m
A B pam B8
< wee 0

%
N,

41

E:&-
Club

Mesos Architecture

hAP1IOb

MPI

MPI
executor

task

(
ﬂ Resource
offer

MPI
executor

task

Pick framework to
offer resources to

J

42

Mesos Architecture

MPI job Hadoop job

I
MPI

3
Hadoop

scheduler scheduler

N

a

K]

Resource offer =
list of (node, availableResources)

E.g. { (nodel, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }

framework to
resources to

|

Mesos slave Mesos slave

MPI MPI

|
I executor executor ! |
|
|

|
task I

Mesos Architecture @]

MPI job Hadoop job
I 1

MPI Hadnon Framework-specific
scheduler sch task scheduling
ﬂ Resource
offer

Pick framework to
offer resources to

Launches and
isolates executors

MPI
executor

executor | executor

task

44

Summary

* Cloud computing/datacenters are the new computer
— Emerging “Datacenter/Cloud Operating System” appearing

* Pieces of the DC/Cloud OS
— High-throughput filesystems (GFS/HDFS)
— Job frameworks (MapReduce, Spark, Pregel)
— High-level query languages (Pig, Hive)
— Cluster scheduling (Apache Mesos)

—

45

