
CNS: A Content-centric Notification Service
Jiachen Chen∗, Mayutan Arumaithurai∗, Xiaoming Fu∗, K.K.Ramakrishnan†

∗University of Goettingen, Germany, †AT&T Labs-Research, U.S.A.

I. INTRODUCTION
Pub/sub systems have become popular. Supporting such

applications can be a significant challenge because of the need
for timeliness and the need for dynamic user relationships.
Server based pub/sub solutions such as Twitter pose scalability
challenges. They place a large load on the server, including
the need for the server to support frequent polling by all the
subscribers. Overlay solutions (P2P or overlay multicast) are
topology unaware and therefore might introduce overhead in
the network as well as increase latency. Having a network
infrastructure provide the support for these dynamic and large
scale pub/sub systems is therefore desirable.

Content Centric Networking (CCN) [1] is a novel network-
ing paradigm centered around content distribution rather than
host-to-host connectivity. This change from a host-centric to a
content-centric communication capability removes the need for
receivers to know and establish context with specific sources
of information. Named Data Networking (NDN) [2] is one of
the popular CCN approaches.

Our recent proposal of a Content-Oriented Publish/Subscri-
be System (COPSS) [3] enhances some of the existing CCN
approaches such as NDN with a push-based multicast capabil-
ity. COPSS uses the notion of hierarchical Content Descriptors
(CDs) to name the components of information disseminated.
CDs are utilized both by users to subscribe and for users to
publish information. Publishers need not have apriori knowl-
edge of the intended recipients. COPSS is designed to facilitate
a highly dynamic and large scale pub/sub environment and is
able to deliver content in a timely manner.

In this paper we develop a Content-centric Notification
Service (CNS) that can be used for timely notification of
essential information from a user to a group of subscribers that
have requested (or potentially will request) that information.
We envisage such capabilities to be desirable in a variety of
circumstances, including disaster management, event notifica-
tions and many other scenarios where timely notification is
key. Effective authorization is also a very important aspect
in such an environment, i.e. certain publishers would prefer
having control over who has visibility to their information.
E.g., a publisher might want to publish personal data only to
close friends, or another set of data to office colleagues and
yet another set to all his acquaintances. In some special cases,
especially in cases where energy efficiency is critical (e.g., a
user device’s battery has little residual power), the publisher
might not want to (or be able to) do the authorization himself.
The system should also allow a 3rd party (either the network
or a friend) to perform the authorization function. We explore
enhancing our COPSS pub/sub environment with a preliminary
authorization framework that could be used as the building
block for a full-fledged notification service that could be used
in future disaster management situations.

In this work, we demonstrate how CNS facilitates pub/sub
based notification capabilities, highlighting the enhancement
of the basic CCN functionality to achieve control efficiency
achieved with the use of hierarchical CDs. Network efficiency

is achieved with the use of mutlicast, and timeliness is achieved
with the push-based multicast approach. Furthermore, we
will demonstrate the basic authorization capability to provide
access control for a publisher’s information.

II. CNS: A CONTENT-CENTRIC NOTIFICATION SERVICE
CNS leverages the COPSS architecture for efficient data

dissemination. Here, we describe the modules of CNS.
Publisher Management: Every user in our application has a
unique user (publisher) ID so that with a simple combination
of /APP/%UserID%, we can get a unique prefix for that
user. This can be part of the Content Name that is used
by both publishers and subscribers. The Content Name may
have other parameters such as the publisher name, signature
etc., as specified in NDN [2]. Moreover, it may also include
CDs, information that goes beyond what is in the data, so
that you can identify the publisher and who has signed it; it
may also include a hash to ensure data integrity; it may also
have some additional information that indicates the version or
sequence number etc. The published data (e.g., a document)
itself comprises many tokens (e.g., keywords), some of which
are used as CDs by the publisher.

A user will have a profile which is a set of key-value pairs
of his personal properties to uniquely identify the user. The
user may create several groups according to his or her prefer-
ence. For every group, the user may choose a combination of
the properties that identify the user, as the authorization token.
Only the users who know the values of the authorization token
associated with the group can subscribe to that group.

E.g., user Bob has the prefix of /APP/bob. His profile
contains properties of Email, cell phone number, favorite book,
favorite football team, etc.. Using a subset of these, he can have
authorization tokens for groups that are his friends, colleagues,
families, etc.. For the ’colleague’ group, Bob may use his name
and Email as the authorization token. But for people who want
to subscribe to his ‘friend’ group, they need to know his name
and cell phone number as the authorization token.
Basic Authorization: To prevent malicious users from sub-
scribing to a (well-known) CD, our CD based group name
is renamed with the use of hashes (on the group name +
user ID) to provide a basic access control wherein only
subscribers authorized by the publisher gain access to this
CD. As shown in Fig. 1, when a subscriber wants to sub-
scribe, he sends a request to the publisher with the group
name (/APP/bob/questions/colleague in the exam-
ple), and the publisher responds with a challenge, e.g. “what
is my Name and EmailId?”, where “Name” and “EmailId”
are the two attributes in the profile the publisher selects
as the authorization token used to authorize the subscribers.
Assuming that the subscriber knows this information (which
means he is eligible to subscribe to that group), he responds
with the appropriate values in the form of HTML parameter-
s: answers?Name=Bob&EmailId=bob@icn.org. The
publisher on verifying this data sends him the hash-based
hierarchical CD, which the subscriber then subscribes to. If the
subscriber cannot answer the questions correctly, the publisher
will respond with an error instead.978-1-4799-1270-4/13/$31.00 c© 2013 IEEE

A
u

th
o

ri
z

a
ti

o
n

 P
a

th

Subscriber (Alice) Publisher (Bob)
Interest:

Data:

Interest:

Data:

Subscribe:

M
e

d
ia

 P
a

th

Publish(es):

/APP/bob/questions/colleague (Join Request)

Name: /APP/bob/questions/colleague
Signature Info: <metadata>, <signature>
Content: Questions{[Name], [Email]}

/APP/bob/questions/colleague/answers?Name=Bob&Email=xx

Name: /APP/bob/questions/colleague/answers?Name=Bob&Email=xx
Signature Info: <metadata>, <signature>
Content: %hashValue_for_college%

/APP/bob/%hashValue_for_colleague%

CD: /APP/bob/%hashValue_for_colleague
Signature Info: <metadata>, <signature>
Content: (Publication content)

Fig. 1: Protocol exchange for Alice follows Bob’s Colleague group

Note that the authorization path uses the query/ response
approach of NDN. The network provides the functionality
of caching on both challenge and the group hash value. On
receiving a correct answer (in the form of an Interest with the
same name as a previous correct answer), a router in NDN can
respond directly if an existing copy of the hash value is already
in the Content Store. This can save substantial processing and
communication overhead on the publisher end (imagine the
case a pop star that has to authorize a million fans who want
to subscribe to his ’fan’ group, possibly with a cell phone!).
Data Dissemination & Offline Support: Our CNS demo
leverages COPSS to provide a large scale timely notifica-
tion service. Along with the content published, the user
includes the authorization token, which looks like a CD
(e.g. /APP/bob/%hashValue_for_colleague%). Bob
can publish to all his colleagues using a Publish packet with
this authorization token. As defined in COPSS, Bob can
send packets to multiple groups by putting all the needed
authorization tokens in the same Publish packet. The network
will ensure the dissemination of the information automatically.

To help new subscribers as well as users that come online
after having been disconnected for a period of time, we
leverage the ’broker’ concept suggested in COPSS. The broker
subscribes to all the messages published by the user (i.e., CD
/APP) and stores them for a period of time. The new sub-
scribers can query the broker on completing the authorization
phase. The name of the Interest packet is in the form of:

/Broker/APP/UserID/GroupHash/MessageRange.

A subscriber can also get online periodically and request miss-
ing messages by polling the broker. This can help save energy
on the subscriber’s device (e.g., battery) in extreme cases.
3rd-Party Authorization: In some scenarios, a publisher
might want to delegate the task of authorization to a third party
(a subscriber in the same group in our demo). When a publisher
is not able to respond to authorization requests, a subscriber
(Sreq) could forward the request to another subscriber (Sdel)
that is in the same group. Since Sdel knows the answer
for joining the required group, he can decide if the answer
provided by this new subscriber is correct to then provide the
hash of the authorization token to Sreq.

However, there can be security concerns associated with
such transitive authorization schemes. Publishers might not
want to delegate the authorization on some groups, nor do they
want to delegate the authorization to some subscribers. Since
our demo targets as a building block for a generic notification
service, we have not yet addressed these issues in providing a

R1

R3 R2

R4

R6 R5

B0b

Alice

Charlie Dave

Erin

Serve as RP

Chuck

Broker

Fig. 2: Demonstration Topology

3rd party authorization mechanisms, using approaches like a
reputation systems. Instead, we use a simple solution currently:
a publisher can specify if a group is allowed to provide
transitive authorization; and the 3rd party authorization is done
manually (i.e. Sdel decides if Sreq can join a group by clicking
a button in our demo).

III. DEMONSTRATION
We will show with a live demonstration the benefits of

COPSS based content-centric notification service with au-
thorization. Our topology (see Fig. 2) consists of 6 COPSS
enabled routers (in which 1 serves as an RP); 6 clients,
1 of which 1 is named “Bob” will act as a publisher (by
design, any client could be a publisher or a subscriber, but
for the purpose of the demo, we will choose Bob to be the
publisher). Alice and Charlie are Bob’s close friends, Dave is
his colleague. We will show how subscribers gain access to
their respective groups and how Bob is able to post messages
using the COPSS environment and how the subscribers are
able to receive messages posted to group they are authorized
to be part of. The benefit of using COPSS is in terms of
control efficiency and message delivery efficiency as well as
timeliness, which our demo will highlight. All users in our
demo can be offline and acquire the missing messages when
they are back online. We will also seek to show a situation
where Erin will try to obtain an authorization when Bob is not
online, through the 3rd party authorization mechanism. Chuck
is a malicious node that will also attempt to gain access to the
messages posted by Bob, but fails in the authorization phase.

Furthermore, in order to present the work at a larger scale,
we leverage a trace-driven demonstration with roughly 20
clients. In this demonstration, every user is both a publisher
and a subscriber. Due to the scale, we can show a more
complicated (and dynamic) subscription status to highlight the
benefits of a “content-centric” pub/sub notification service.

IV. CONCLUSION
This work demonstrates the benefit brought by COPSS

for an efficient notification service, including the convenience
of hierarchical group management, network efficiency and
timeliness in delivering the notification. The work will also
demonstrate a simple first-step authorization. Future work will
include a more complete authorization, authentication, encryp-
tion and mobility support for a scalable notification service.

ACKNOWLEDGMENT
The work for this paper was performed in the context of

the FP7/NICT EU-JAPAN GreenICN project.
REFERENCES

[1] V. Jacobson, D. K. Smetters et al., “Networking Named Content,” in
CoNEXT, 2009.

[2] L. Zhang, D. Estrin et al., “Named Data Networking (NDN) Project,”
PARC, Tech. Report NDN-0001, 2010.

[3] J. Chen, M. Arumaithurai et al., “COPSS: An Efficient Content Oriented
Pub/Sub System,” in ANCS, 2011.

