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Overview and Structure

30.10.2013 Organisational
30.10.3013 Introduction
06.11.2013 Classification methods (Feature extraction, Metrics, machine learning)

13.11.2013 Classification methods (Basic recognition, Bayesian, Non-parametric)

20.11.2013 –
27.11.2013 –
04.12.2013 –
11.12.2013 Classification methods (Linear discriminant, Neural networks)

18.12.2013 Classification methods (Sequential, Stochastic)

08.01.2014 Features from the RF channel (Effects of the mobile radio channel)

15.01.2014 Security from noisy data (Error correcting codes, PUFs, Applications)

22.01.2014 Context prediction (Algorithms, Applications)

29.01.2014 Networked Objects (Sensors and sensor networks, body area networks)

05.02.2014 Internet of Things (Sensors and Technology, vision and risks)
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Intro

Recognition of patterns

Bayesian decision theory

Non-parametric techniques

Linear discriminant functions

Neural networks

Sequential data

Stochastic methods
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Mapping of features onto classes by using prior knowledge

What are characteristic features?

Which approaches are suitable to obtain these features?
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Data sampling

Record sufficient training data

Annotated! (Ground-truth)
Multiple subjects
Various environmental
conditions (time of day,
weather, ...)

Example

Electric supply data over 15
years covers 5000 days but only
15 christmas days

Especially critical events like
accidents (e.g. plane, car,
earthquake) are scarce
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Feature subset-selection

Pre-process data

Framing
Normalisation
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Feature extraction

Identify meaningful features

remove irrelevant/redundant
features

Features can be contradictory!
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Feature subset-selection

Simple ranking of features with correlation coefficients

Example: Pearson Correlation Coefficient

%(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )
(1)

Identifies linear relation between input variables xi and an
output y
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Feature subset-selection

How to do reasonable
feature selection

Utilise dedicated test- and
training- data-sets

Pay attention that a
single raw-data sample
could not impact features
in both these sets

Don’t train the features
on the training- or test-
data-set
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Training of the classifier

A decision tree classifier

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Training of the classifier

Evaluation of classification performance

k-fold cross-validation

Standard: k=10

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Training of the classifier
Evaluation of classification performance

Leave-one-out cross-validation

n-fold cross validation where n is the number of instances in
the data-set

Each instance is left out once and the algorithm is trained on
the remaining instances

Performance of left-out instance (success/failure)
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Training of the classifier

Evaluation of classification performance

0.632 Bootstrap

Form training set by choosing n
instances from the data-set
with replacement

All not picked instances are used
for testing

Probability to pick a specific
instance:
1−

(
1− 1

n

)n ≈ 1− e−1 ≈ 0.632
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Training of the classifier

Evaluation of classification performance

Classification accuracy

Confusion matrices

Precision

Recall
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Training of the classifier
Evaluation of classification performance

Information score
Let C be the correct class of an instance and P(C ), P ′(C ) be the
prior and posterior probability of a classifier
We define:1

Ii =

{
− log(P(C )) + log(P ′(C )) if P ′(C ) ≥ P(C )

− log(1− P(C )) + log(1− P ′(C )) else
(2)

The information score is then

IS =
1

n

n∑
i=1

Ii (3)

1
I. Kononenko and I. Bratko: Information-Based Evaluation Criterion for Classifier’s Performance, Machine

Learning, 6, 67-80, 1991.
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Training of the classifier

Evaluation of classification performance

Brier score
The Brier score is defined as

Brier =
n∑

i=1

(t(xi )− p(xi ))2 (4)

where

t(xi ) =

{
1 if xi is the correct class
0 else

(5)

and p(xi ) is the probability the classifier assigned to the class xi .
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Training of the classifier

Evaluation of classification performance

Area under the receiver operated characteristic (ROC) curve
(AUC)
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Pattern recognition and classification

Data mining frameworks

Orange Data Mining
(http://orange.biolab.si/)

Weka Data Mining
(http://www.cs.waikato.ac.nz/ml/weka/)
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Pattern recognition and classification
From features to context

Measure available data on features
Context reasoning by appropriate method

Syntactical (rule based – e.g. RuleML)
Bayesian classifier
Non-parametric
Linear discriminant
Neural networks
Sequential
Stochastic
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Pattern recognition and classification

Allocation of sensor value by defined
function

Correlation of various data sources
Several methods possible – simple
approaches
Template matching
Minimum distance methods
’Integrated’ feature extraction

Nearest Neighbour
Neural Networks

Problem

Measured raw data might not allow
to derive all features required
Therefore often combination of
sensors
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Pattern recognition and classification

Methods – Syntactical (Rule based)

Idea: Description of Situation by formal Symbols and Rules
Description of a (agreed on?) world view
Example: RuleML

Comment
Pro:

Combination of rules and identification of loops and
impossible conditions feasible

Contra:

Very complex with more elaborate situations
Extension or merge of rule sets typically not possible without
contradictions
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Pattern recognition and classification

Rule Markup Language: Language for
publishing and sharing rules

Hierarchy of rule-sub-languages (XML,
RDF, XSLT, OWL)

Example:

A meeting room was occupied by
min 5 people for the last 10 minutes.

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes
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Pattern recognition and classification

Also conditions can be modelled

A Meeting is taking place in a meeting room when it was
occupied by min 5 people for the last 10 minutes.

Atom

Rel Var
meeting roommeeting

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes

Implies

head body
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Pattern recognition and classification

Logical combination of conditions

A Meeting is taking place in a meeting room when it was
occupied by min 5 people for the last 10 minutes and the light
is on.

Atom

Rel Var
meeting roommeeting

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes

Implies

head body

Atom

Rel Var
lighton

And
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Recognition of patterns

Patterns can be described by a sufficient number of rules

Samples are inaccurate

Tremendous amount of rules to model all variations of one class

Therefore: Consider machine learning approaches
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Recognition of patterns

Training set x1 . . . xN of a large number of N samples is utilised

Classes t1 . . . tN of all samples in this set known in advance

Machine learning algorithm computes a function y(x) and
generates a new target t‘

y(   ) 3
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Polynomial curve fitting

Example

A curve shall be approximated by a machine learning approach

Sample points are created for the function sin(2πx) +N where N
is a random noise value
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Polynomial curve fitting

We will try to fit the data points into a polynomial function:

y(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j
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Polynomial curve fitting

We will try to fit the data points into a polynomial function:

y(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

This can be obtained by minimising an error function that
measures the misfit between y(x ,−→w ) and the training data set:

E (−→w ) =
1

2

N∑
i=1

[
y(xi ,

−→w )− ti

]2
E (−→w ) is non-negative and zero if and only if all points are covered
by the function
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Polynomial curve fitting

One problem is the right choice of the dimension M

When M is too small, the approximation accuracy might be bad
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Polynomial curve fitting

However, when M becomes too big, the resulting polynomial will
cross all points exactly

When M reaches the count of samples in the training data set, it is
always possible to create a polynomial of order M that contains all
values in the data set exactly.
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Polynomial curve fitting
This event is called overfitting

The polynomial now trained too well to the training data

It will therefore perform badly on another sample of test data for
the same phenomenon

We visualise it by the Root of the Mean Square (RMS) of E (−→w )

ERMS =

√
2E (−→w )

N
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Polynomial curve fitting

With increasing number of data points, the problem of overfitting
becomes less severe for a given value of M
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Polynomial curve fitting

One solution to cope with overfitting is regularisation

A penalty term is added to the error function

This term discourages the coefficients of −→w from reaching large
values

E (−→w ) =
1

2

N∑
i=1

[
y(xi ,

−→w )− ti

]2
+
λ

2
||−→w ||2

with
||−→w ||2 = −→w T−→w = w2

0 + w2
1 + · · ·+ w2

M
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Polynomial curve fitting

Depending on the value of λ, overfitting is controlled

E (−→w ) =
1

2

N∑
i=1

[
y(xi ,

−→w )− ti

]2
+
λ

2
||−→w ||2
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Bayesian decision theory

With probability theory, the probability of events can be estimated
by repeatedly generating events and counting their occurrences

When, however, an event only very seldom occurs or is hard to
generate, other methods are required

Example:

Probability that the Arctic ice cap will have disappeared by the end
of this century

In such cases, we would like to model uncertainty

In fact, it is possible to represent uncertainty by probability
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Conditional probability

Conditional probability

The conditional probability of two events χ1 and χ2 with
P(χ2) > 0 is denoted by P(χ1|χ2) and is calculated by

P(χ1|χ2) =
P(χ1 ∩ χ2)

P(χ2)

P(χ1|χ2) describes the probability that event χ2 occurs in the
presence of event χ2.
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Bayesian decision theory

With the notion of conditional probability we can express the effect
of observed data

−→
t = t1, . . . , tN on a probability distribution of

−→w : P(−→w ).

Thomas Bayes described a way to evaluate the uncertainty of −→w
after observing

−→
t

P(−→w |−→t ) =
P(
−→
t |−→w )P(−→w )

P(
−→
t )

P(
−→
t |−→w ) expresses how probable a value for

−→
t is given a fixed

choice of −→w
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Bayesian decision theory
A principle difference between Bayesian viewpoint and frequentist
viewpoint is that prior assumptions are provided

Example:

Consider a fair coin that scores heads in three consecutive tosses

Classical maximum likelihood estimate will predict head for future
tosses with probability 1

Bayesian approach includes prior assumptions on the probability of
events and would result in a less extreme conclusion
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Bayesian curve fitting

In the curve fitting problem, we are given −→x and
−→
t together with

a new sample xM+1

The task is to find a good estimation of the value tM+1

This means that we want to evaluate the predictive distribution

p(tM+1|xM+1,
−→x ,−→t )

To account for measurement inaccuracies, typically a probability
distribution (e.g. Gauss) is underlying the sample vector −→x
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Bayesian curve fitting

This means that we want to evaluate the predictive distribution

p(tM+1|xM+1,
−→x ,−→t )

After consistent application of the sum and product rules of
probability we can rewrite this as

p(tM+1|xM+1,
−→x ,−→t ) =

∫
p(tM+1|xM+1,

−→w )p(−→w |−→x ,−→t )d−→w
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Bayesian curve fitting

M=9

Mean of the predictive distribution

+/- 1 standard deviation
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Example
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Histogram methods
Alternative approach to function estimation: histogram methods

In general, the probability density of an event is estimated by
dividing the range of N values into bins of size ∆i

Then, count the number of observations that fall inside bin ∆i

This is expressed as a normalised probability density

pi =
ni

N∆i
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Histogram methods

Accuracy of the estimation is dependent on the width of the bins

Approach well suited for big data since the data items can be
discarded once the histogram is created
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Histogram methods

Issues:
Due to the edges of the bins, the modelled distribution is
characterised by discontinuities not present in the underlying
distribution observed

The method does not scale well with increasing dimension
(Curse of dimensionality)
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Parzen estimator methods

Assume an unknown probability density p(·)

We want to estimate the probability density p(−→x ) of −→x in a
D-dimensional Euclidean space

We consider a small region R around −→x :

P =

∫
R
p(−→x )d−→x
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Parzen estimator methods

We utilise a data set of N observations

Each observation has a probability of P to fall inside R

With the binomial distribution we can calculate the count K of
points falling into R:

Bin(K |N,P) =
N!

K !(N − K )!
PK (1− P)N−K
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Parzen estimator methods
We utilise a data set of N observations

Each observation has a probability of P to fall inside R

With the binomial distribution we can calculate the count K of
points falling into R:

Bin(K |N,P) =
N!

K !(N − K )!
PK (1− P)N−K

For large N we can show

K ≈ NP

With sufficiently small R we can also show for the volume V of R
P ≈ p(−→x )V

Therefore, we can estimate the density as

p(−→x ) =
K

NV
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Parzen estimator methods

We assume that R is a small hypercube

In order to count the number K of points that fall inside R we
define

k(−→u ) =

{
1, |ui | ≤ 1

2 , i = 1, . . . ,D,
0, otherwise

This represents a unit cube centred around the origin

This function is an example of a kernel-function or Parzen window
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Parzen estimator methods

k(−→u ) =

{
1, |ui | ≤ 1

2 , i = 1, . . . ,D,
0, otherwise

When the measured data point −→xn lies inside a cube of side h
centred around −→x , we have

k

(−→x −−→xn

h

)
= 1

The total count K of points that fall inside this cube is

K =
N∑

n=1

k

(−→x −−→xn

h

)
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Parzen estimator methods

The total count K of points that fall inside this cube is

K =
N∑

n=1

k

(−→x −−→xn

h

)
When we substitute this in the density estimate derived above

p(−→x ) =
K

NV

with volume V = hD we obtain the overall density estimate as

p(−→x ) =
1

N

N∑
n=1

1

hD

(−→x −−→xn

h

)
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Parzen estimator methods

p(−→x ) =
1

N

N∑
n=1

1

hD

(−→x −−→xn

h

)
Again, this density estimator suffers from artificial discontinuities
(Due to the fixed boundaries of the cubes)

Problem can be overcome by choosing a smoother kernel function
(A common choice is a Gaussian kernel with a standard deviation σ)

p(−→x ) =
1

N

N∑
n=1

1

(2πσ2)
D
2

e−
||−→x −−→xn ||2

2σ2
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Parzen estimator methods

Density estimation for various values of σ
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Nearest neighbour methods
A problem with Parzen estimator methods is that the parameter
governing the kernel width (h or σ) is fixed for all values −→x

In regions with

...high density, a wide kernel might lead to over-smoothing

...low density, the same width may lead to noisy estimates
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Nearest neighbour methods

NN-methods address this by adapting width to data density

Parzen estimator methods fix V and determine K from the data
Nearest neighbour methods fix K and choose V accordingly

Again, we consider a point −→x and estimate the density p(−→x )

The radius of the sphere is increased until K data points (the
nearest neighbours) are covered
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Nearest neighbour methods

The value K then controls the amount of smoothing

Again, an optimum value for K exists
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Nearest neighbour methods

Classification: Apply KNN-density estimation for each class

Assume data set of N points with Nk points in class Ck

To classify sample −→x , draw a sphere containing K points around −→x

Sphere can contain other points regardless of their class

Assume sphere has volume V and contains Kk points from Ck
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Nearest neighbour methods
Assume: Sphere of volume V contains Kk points from class Ck

We estimate the density of class Ck as

p(−→x |Ck ) =
Kk

NkV

The unconditional density is given as

p(−→x ) =
K

NV

The probability to experience a class Ck is given as

p(Ck ) =
Nk

N

With Bayes theorem we can combine this to achieve

p(Ck |−→x ) =
p(−→x |Ck )p(Ck )

p(−→x )
=

Kk

K
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Nearest neighbour methods

p(Ck |−→x ) =
p(−→x |Ck )p(Ck )

p(−→x )
=

Kk

K

To minimise the probability of misclassification, assign −→x to class
with the largest probability

This corresponds to the largest value of

Kk

K
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Nearest neighbour methods

To classify a point, we identify the K nearest points

And assign the point to the class having most representatives in
this set

Choice K = 1 is called nearest neighbour rule

For this choice, the error rate is never more than twice the
minimum achievable error rate of an optimum classifier2

2
T. Cover and P. Hart: Nearest neighbour pattern classification. IEEE Transactions on Information Theory,

IT-11, 21-27, 1967
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Nearest neighbour methods

Classification of points by the K-nearest neighbour classifier
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Nearest neighbour methods

Classification of points by the K-nearest neighbour classifier
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Nearest neighbour methods

The KNN-method and the Parzen-method are not well suited for
large data sets since they require the entire data set to be stored
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Support vector machines (SVM)

In classification we assign −→x to one of K discrete classes Ck

The input is divided by decision boundaries

Here we assume that decision boundaries are linear functions of −→x

Data separable by linear decision surfaces are linear separable

With high dimension, a set of two classes is always linear separable
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Support vector machines (SVM)
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Support vector machines (SVM)

SVM pre-processes data to represent patterns in a high dimension

Dimension often much higher than original feature space

Then, insert hyperplane in order to separate the data
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Support vector machines (SVM)
A pattern −→xk is transformed to −→yk = ϕ(−→xk )

Also, each −→xk is associated with zk ∈ {−1, 1}

A linear discriminant in an augmented −→y space is g(−→y ) = −→a t−→y

A separating hyperplane ensures for y0 = 1, a0 ≥ 1

zkg(yk ) ≥ 1
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Support vector machines (SVM)
The goal for support vector machines is to find a separating
hyperplane with the largest margin b to the outer points in all sets

zkg(yk )

||−→a ||
≥ b, k = 1, . . . , n

If no such hyperplane exists, map all points into a higher
dimensional space until such a plane exists

Support vectors satisfy ‘· = b‘
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Support vector machines (SVM)

Simple application to several classes by iterative approach:

belongs to class 1 or not?

belongs to class 2 or not?

...

Search for optimum mapping between input space and feature
space complicated (no optimum approach known)
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Support vector machines (SVM)

Simple learning approach to find the correct hyperplane:

Starting from an initial separating hyperplane

Find worst classified pattern (on the wrong side of the hyperplane)

Design a new hyperplane with this pattern as one of the support
vectors

Iterate until all patterns are correctly classified
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Intro

Recognition of patterns

Bayesian decision theory

Non-parametric techniques

Linear discriminant functions

Neural networks

Sequential data

Stochastic methods
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Neural networks

Learn mapping from input to
output vector

Representation by
edge-weighted graph

Distinction between

Input neurons

Output neurons

Hidden nodes

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Neural networks
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Neural networks

Input neurons are only equipped with
outgoing edges

Hidden nodes ‘fire‘ (output value 1)
when weighted inputs exceed
threshold function Θ

yi =

{
1, if

∑n
i=1 xiwi ≥ Θ

0, else.
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Neural networks
Learning with back-propagation (schematic):
(Iterate until the error is sufficiently small)

1 Choose a training-pair and copy it to the input layer
2 Propagate it through the network
3 Calculate error between computed and expected output
4 Propagate the sum product of the weights back into the

network in order to calculate the error in internal layers
5 Adapt weights to the error
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Neural networks
Single hidden layer sufficient to represent arbitrary
multi-dimensional functions

Well suited for noisy input data

Implicit clustering of input data possible

Complex to extend network (e.g. add new features)
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Neural networks

For the input layer, we construct M linear combinations of the
input variables x1, . . . , xD and weights w1, . . . ,wD

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0

Each aj is transformed using a differentiable, non-linear activation
function

zj = h(aj )
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Neural networks

Input layer M linear combinations of x1, . . . , xD and w1, . . . ,wD

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0

Activation function: Differentiable, non-linear

zj = h(aj )

h(·) function is usually a sigmoidal function or tanh

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Neural networks
Values zj are again linearly combined in hidden layers:

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0

with k = 1, . . . ,K describing the total number of outputs

Again, these values are transformed using a sufficient
transformation function σ to obtain the network outputs yk

yk = σ(ak )

For multi-class problems, we use a function such as

σ(a) =
1

1 + e−a
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Neural networks

Combine these stages to achieve overall network function:

yk (−→x ,−→w ) = σ

 M∑
j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0


(Multiple hidden layers are added analogously)
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Neural networks

Activation functions of hidden units are linear ⇒ Always find
equivalent network without hidden units
(Composition of successive linear transformations itself linear transformation)
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Neural networks

Number of hidden units < number of input or output units ⇒ not
all linear functions possible
(Information lost in dimensionality reduction at hidden units)
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Neural networks

Neural networks are Universal approximators3 4 5 6 7 8 9 10

⇒ 2-layer linear NN can approximate any continuous function

3
K. Funahashi: On the approximate realisation of continuous mappings by neural networks, Neural Networks,

2(3), 183-192, 1989
4

G. Cybenko: Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2, 304-314, 1989

5
K. Hornik, M. Sinchcombe, H. White: Multilayer feed-forward networks are universal approximators. Neural

Networks, 2(5), 359-366, 1989
6

N.E. Cotter: The stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on
Neural Networks 1(4), 290-295, 1990

7
Y. Ito: Representation of functions by superpositions of a step or sigmoid function and their applications to

neural network theory. Neural Networks 4(3), 385-394, 1991
8

K. Hornik: Approximation capabilities of multilayer feed forward networks: Neural Networks, 4(2), 251-257,
1991

9
Y.V. Kreinovich: Arbitrary non-linearity is sufficient to represent all functions by neural networks: a theorem.

Neural Networks 4(3), 381-383, 1991
10

B.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, 1996
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Neural networks

Remaining issue in neural networks

Find suitable parameters given a set of training data

Several learning approaches have been proposed
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Neural networks

Simple approach to determine network parameters: Minimise
sum-of-squared error function

Given a training set −→xn with n ∈ {1, . . . ,N}
And corresponding target vectors

−→
tn

Minimise the error function

E (−→w ) =
1

2

N∑
n=1

(y(−→xn ,
−→w )−−→tn )2
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Neural networks – Classification

2 classes C1 and C2

We consider a network with a single output

y = σ(a) ≡ 1

1 + e−a

Output interpreted as conditional probability p(C1|−→x )

Analogously, we have p(C2|−→x ) = 1− p(C1|−→x )

K classes C1, · · · , CK

Binary target variables tk ∈ {0, 1}
Network outputs are interpreted as yk (−→x ,−→w ) = p(tk = 1|−→x )
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Introduction to self organising maps (SOM)
Proposed by Teuvo Kohonen11

As a model of the self-organisation of neural connections

Maps high dimensional input to low dimensional output

Based on neural network learning of the underlying mapping

11
Teuvo Kohonen, Self-Organizing Maps, Springer, 2001.
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Introduction to self organising maps

Present all points in a source space by points in a target space

Given a sequence of points in a sample space,

Create a mapping of these points into a target space that respects
the neighbourhood relation in the sample space
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Introduction to self organising maps

SOM is a topology preserving lattice of predefined number of nodes

Represents topology of elements in input space.

Algorithm inherits self-organisation property

Able to produce organisation starting from total disorder.

Defines and preserves neighbourhood structure between nodes

Learning by two layer neural network
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Introduction to self organising maps
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Introduction to self organising maps

When a pattern
−→
φi is presented, each node (represented by outer

neurons) in the target space computes its activation
−→
φ t

i
−→w .

Most activated node y∗ and weights to its neighbours are updated
according to a learning rate ρ(t)

wki (t + 1) = wki (t) + ρ(t)Λ(|y − y∗|)(
−→
φi − wki (t))

Λ(·) defines a non-increasing neighbourhood function and |y − y∗|
describes the distance of nodes in the neighbourhood
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SOM – Self organisation
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SOM – Definition

Condensed definition of SOM from Cottrell et al.12

Self organising maps

Let I = {−→η1, . . . ,
−→η|S|} be a set of km-dimensional vectors that

are associated with nodes in a lattice.

Neighbourhood structure provided by symmetrical
neighbourhood function d : I × I → R which depends on the
distance between two nodes −→ηi and −→ηj ∈ I .

State of the map at time t given by

η(t) =
(−−−→
η1(t),

−−−→
η2(t), . . . ,

−−−−→
η|S|(t)

)
,

12
M. Cottrell, J.C. Fort and G. Pages, Theoretical aspects of the SOM algorithm, Neurocomputing, pp.

119-138, vol 21, 1998.
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SOM – Definition

Self organising map algorithm

The SOM algorithm is recursively defined by

ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
= argmin

{∥∥∥−−−−−→v(t + 1)−
−−→
ηi (t)

∥∥∥ ,−−→ηi (t) ∈ η(t)
}
,

−−−−−→
ηi (t + 1) =

−−→
ηi (t)− εtd

[
ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
,−→ηi

]
·
(−−→
ηi (t)−

−−−−−→
v(t + 1)

)
,∀−→ηi ∈ I .

In this formula, ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
corresponds to the node in the

network that is closest to the input vector.

Parameter εt controls the adaptability.
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SOM – Operational principle

Input values vi (t) are to be mapped onto the target space
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SOM – Operational principle

Node with the lowest distance is associated with the input value:

ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
= argmin

{∥∥∥−−−−−→v(t + 1)−
−−→
ηi (t)

∥∥∥ ,−−→ηi (t) ∈ η(t)
}
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SOM – Operational principle

Nodes in the neighbourhood of the associated node are moved
closer to the input value
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SOM – Operational principle

Nodes in the neighbourhood of the associated node are moved to
the input value

−−−−−→
ηi (t + 1) =

−−→
ηi (t)− εtd

[
ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
,−→ηi

]
·
(−−→
ηi (t)−

−−−−−→
v(t + 1)

)
,∀−→ηi ∈ I .
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SOM – Example application: TEA
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SOM – Example application: TEA
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SOM – Remarks

SOM algorithm always converges13

Normalisation of input vectors might improve numerical accuracy

Not guaranteed that self-optimisation will always occur
(Dependent on choice of parameters)

Difficult to set parameters of the model since SOM is not
optimising any well-defined function14

If neighbourhood is chosen to be too small, the map will not be
ordered globally

13
Y. Cheng, Neural Computation, 9(8), 1997.

14
E. Erwin, K. Obermayer, K. Schulten: Self-organising maps: Ordering, convergence properties and energy

functions. Biological Cybernetics, 67, 47-55, 1992
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Problems of SOMs

Map created as target space might have several orientations

One part of the map might follow one orientation, while other
parts are following other orientations
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Markov chains

Markov processes

Intensively studied

Major branch in the theory of stochastic processes

A. A. Markov (1856 – 1922)

Extended by A. Kolmogorov to chains of infinitely many states

’Anfangsgründe der Theorie der Markoffschen Ketten mit
unendlich vielen möglichen Zuständen’ (1936) 15

15
A. Kolmogorov,Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen

Zuständen, 1936.
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Markov chains

Theory applied to a variety of algorithmic problems

Standard tool in many probabilistic applications

Intuitive graphical representation

Suitable for graphical illustration of stochastic processes

Popular for their simplicity and easy applicability to huge set of
problems16

16
William Feller, An introduction to probability theory and its applications, Wiley, 1968.
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Markov chains
Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurrence probability pi

Probability to observe sample sequence:
P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi

Dependent trials of events

Probability to observe specific sequence E1,E2, . . . ,Ei

obtained by conditional probability:

P(Ei |E1,E2, . . . ,Ei−1)

In general:

P(Ei |E1,E2, . . . ,Ei−1) 6= P(Ei |E2,E1,E3,E4, . . . ,Ei−1)
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Markov chains
Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurrence probability pi

Probability to observe sample sequence:
P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi

Dependent trials of events

Probability to observe specific sequence E1,E2, . . . ,Ei

obtained by conditional probability:

P(Ei |E1,E2, . . . ,Ei−1)

In general:

P(Ei |E1,E2, . . . ,Ei−1) 6= P(Ei |E2,E1,E3,E4, . . . ,Ei−1)

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Markov chains
Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurrence probability pi

Probability to observe sample sequence:
P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi

Dependent trials of events

Probability to observe specific sequence E1,E2, . . . ,Ei

obtained by conditional probability:

P(Ei |E1,E2, . . . ,Ei−1)

In general:

P(Ei |E1,E2, . . . ,Ei−1) 6= P(Ei |E2,E1,E3,E4, . . . ,Ei−1)
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Markov chains

Independent random variables

Number of coin tosses until ’head’ is observed

Radioactive atoms always have same probability of decaying
at next trial

Dependent random variables

Knowledge that no car has passed for five minutes increases
expectation that it will come soon.

Coin tossing:

Probability that the cumulative numbers of heads and tails will
equalize at the second trial is 1

2
Given that they did not, the probability that they equalize after
two additional trials is only 1

4
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Markov chains

Independent random variables

Number of coin tosses until ’head’ is observed

Radioactive atoms always have same probability of decaying
at next trial

Dependent random variables

Knowledge that no car has passed for five minutes increases
expectation that it will come soon.

Coin tossing:

Probability that the cumulative numbers of heads and tails will
equalize at the second trial is 1

2
Given that they did not, the probability that they equalize after
two additional trials is only 1

4
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Markov property

In the theory of stochastic processes the described lack of memory
is connected with the Markov property.

Outcome depends exclusively on outcome of directly preceding trial

Every sequence (Ei ,Ej ) has a conditional probability pij

Additionally: Probability ai of the event Ei
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Markov chains

Markov chain
A sequence of observations E1,E2, . . . is called a Markov chain if
the probabilities of sample sequences are defined by

P(E1,E2, . . . ,Ei ) = a1 · p12 · p23 · · · · · p(i−1)i .

and fixed conditional probabilities pij that the event Ei is observed
directly in advance of Ej .
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Markov chains

Described by probability a for initial distribution and matrix P of
transition probabilities.

P =

 p11 p12 p13 · · ·
p21 p22 p23 · · ·

...
...

...
. . .


P is called a stochastic matrix

(Square matrix with non-negative entries that sum to 1 in each row)
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Markov chains

pk
ij denotes probability that Ej is observed exactly k observations

after Ei was observed.

Calculated as the sum of the probabilities for all possible paths
EiEi1 · · ·Eik−1

Ej of length k

We already know
p1

ij = pij

Consequently:

p2
ij =

∑
ν

piν · pνj

p3
ij =

∑
ν

piν · p2
νj
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Markov chains
By mathematical induction:

pn+1
ij =

∑
ν

piν · pn
νj

and
pn+m

ij =
∑
ν

pm
iν · pn

νj =
∑
ν

pn
iν · pm

νj

Similar to matrix P we can create a matrix Pn that contains all pn
ij

pn+1
ij obtained from Pn+1: Multiply row i of P with column j of Pn

Symbolically: Pn+m = PnPm.

Pn =

 pn
11 pn

12 pn
13 · · ·

pn
21 pn

22 pn
23 · · ·

...
...

...
. . .
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Markov chains
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Hidden Markov Models

Make a sequence of decisions for a process that is not directly
observable17

Current states of the process might be impacted by prior states

HMM often utilised in speech recognition or gesture recognition

17
Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification, Wiley interscience, 2001.
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Hidden Markov Models

At every time step t the system is in an internal state ω(t)

Additionally, we assume that it emits a (visible) symbol v(t)

Only access to visible symbols and not to internal states
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Hidden Markov Models

Probability to be in state ωj (t) and emit symbol vk (t):

P(vk (t)|ωj (t)) = bjk

Transition probabilities: pij = P(ωj (t + 1)|ωi (t))

Emission probability: bjk = P(vk (t)|ωj (t))
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Hidden Markov Models

Central issues in hidden Markov models:

Evaluation problem Determine the probability that a particular
sequence of visible symbols V T was generated by a
given hidden Markov model

Decoding problem Determine the most likely sequence of hidden
states ωT that led to a specific sequence of
observations V T

Learning problem Given a set of training observations of visible
symbols, determine the parameters pij and bjk for a
given HMM
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Hidden Markov Models – Evaluation problem
Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

P(V T |ωT )P(ωT )

Also:

P(ωT ) =
T∏

t=1

P(ω(t)|ω(t − 1))

P(V T |ωT ) =
T∏

t=1

P(v(t)|ω(t))

Together:

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))
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Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Formally complex but straightforward

Naive computational complexity

O(cTT )
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Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Computationally less complex algorithm:

Calculate P(V T ) recursively

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) involves only v(t), ω(t) and
ω(t − 1)

αj (t) =


0 t = 0 and j 6= initial state
1 t = 0 and j = initial state
[
∑

i αi (t − 1)pij ] bjk otherwise (bjk leads to observed v(t))
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Hidden Markov Models – Evaluation problem

Forward Algorithm

Computational complexity: O(c2T )

Forward algorithm

1 initialise t ← 0, pij , bjk ,V
T , αj (0)

2 for t ← t + 1
3 j ← 0
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 until t = T
8 return P(V T )← αj (T ) for the final state

9 end
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Hidden Markov Models – Decoding problem

Given a sequence V T , find most probable sequence of hidden states

Enumeration of every possible path will cost O(cT )

Not feasible
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Hidden Markov Models – Decoding problem

Given a sequence V T , find most probable sequence of hidden states

Decoding algorithm

1 initialise: path ← {}, t ← 0
2 for t ← t + 1
3 j ← 0;
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 j ′ ← arg maxj αj (t)
8 append ωj ′ to path

9 until t = T
10 return path

11 end
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Hidden Markov Models – Decoding problem

Computational time of the decoding algorithm

O(c2T )
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Hidden Markov Models – Learning problem

Determine the model parameters pij and bjk

Given: Training sample of observed values V T

No method known to obtain the optimal or most likely set of
parameters from the data

However, we can nearly always determine a good solution by
the forward-backward algorithm

General expectation maximisation algorithm

Iteratively update weights in order to better explain the
observed training sequences
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Hidden Markov Models – Learning problem

Probability that the model is in state ωi (t) and will generate the
remainder of the given target sequence:

βi (t) =


0 t = T and ωi (t) not final hidden state
1 t = T and ωi (t) final hidden state∑

j βj (t + 1)pijbjk otherwise (bjk leads to v(t + 1))
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Hidden Markov Models – Learning problem

αi (t) and βi (t) only estimates of their true values since transition
probabilities pij , bjk unknown

Probability of transition between ωi (t − 1) and ωj (t) can be
estimated

Provided that the model generated the entire training
sequence V T by any path

γij (t) =
α(t − 1)pijbjkβj (t)

P(V T |Ω)

Probability that model generated sequence V T :

P(V T |Ω)
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Hidden Markov Models – Learning problem

Calculate improved estimate for pij and bjk

pij =

∑T
t=1 γij (t)∑T

t=1

∑
k γik(t)

bjk =

∑T
t=1,v(t)=vk

∑
l γjl (t)∑T

t=1

∑
l γjl (t)

Start with rough estimates of pij and bjk

Calculate improved estimates

Repeat until some convergence is reached
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Hidden Markov Models – Learning problem

Forward-Backward algorithm

1 initialise pij , bjk ,V
T , convergence criterion ∆, t ← 0

2 do t ← t + 1
3 compute pij (t)

4 compute bjk(t)

5 pij (t)← pij (t)

6 bjk (t)← bjk (t)
7 until maxi ,j ,k [pij (z)− pij (z − 1), bjk (t)− bjk(t − 1)] < ∆

(convergence achieved)

8 return pij ← pij (t), bjk ← bjk (t)
9 end
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Outline

Intro

Recognition of patterns

Bayesian decision theory

Non-parametric techniques

Linear discriminant functions

Neural networks

Sequential data

Stochastic methods
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Stochastic methods

When problem structure is not well known, it might be hard to
configure classification methods correctly

Solution: randomised search approaches

Search space spanned by possible configurations for all parameters

Solutions found are not necessarily optimal

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Randomised search approaches

Local random search

Metropolis algorithm

Simulated annealing

Evolutionary algorithms
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Local random search heuristics

Local random search

Intuitive way to climb a mountain (by a sightless climber)

Local random search
∀x in search space S , define non-empty neighbourhood N(x) ⊆ S
Iteratively draw one sample x ′ ∈ N(x).
Fitness improved (F (x) > F (x ′)) ⇒ new best search point.
Otherwise ⇒ discarded.
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Local random search heuristics

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

N

N(x) = x or N(x) = S valid, but original idea is that N(x) is small
set of search points.

Points x ′ ∈ N(x) expected nearer to x than points x ′′ 6∈ N(x)

Typically, x ∈ N(x)
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Local random search heuristics

Complexity reduction by restriction of the search space size

Example: S = {0, 1}n and Nd (x) are all
points y with Hamming distance smaller
than d (H(x , y) ≤ d)

For constant d we obtain:
|Nd (x)| = Θ(nd )� |S | = 2n

d ≤ 1 d ≤ 2 d ≤ 3
1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 1 0 1 1 1 0 1 1

0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 1

0 1 0 0
0 1 1 1
1 1 0 1
1 0 0 1

|Nd (x)| =

(
n
d

)
+

(
n

d − 1

)
+ · · ·+

(
n
1

)
+

(
n
0

)
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Local random search heuristics

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

N

Small neighbourhood: Fast conversion to local optima

Huge neighbourhood: Similar to random search

Variable neighbourhood :

Initially, big neighbourhood, then decrease
Challenging: Not to decrease too fast
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Local random search heuristics

Local optima avoidance: Multistart

Search applied t times on problem

Probability amplification : respectable
result also with low success probability

Assume: success probability δ > 0
for one iteration

After t iterations overall success
probability: 1− (1− δ)t

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
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Metropolis algorithms

Local random search: only multistart can avoid local optima.

Metropolis approach accepts also search
points that decrease fitness value

F (x ′) > F (x) ⇒ x ′ discarded with prob.

1− 1

e(F (x ′)−F (x))/T

T → 0 random search

T →∞ uncontrolled local search 0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Exceeds

size
Neighbourhood
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Simulated annealing

Choice of optimal T not easy ⇒ Change during optimisation

Initially: T should allow to ’jump’ to other regions of the search
space with increased fitness value

Finally: Process should gradually ’freeze’ until local search
approach propagates the local optimum in the neighbourhood

Analogy to natural cooling processes in the creation of crystals:

Temperature gradually decreased so that Molecules that could
move freely at the beginning are slowly put into their place
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Simulated annealing

No natural problem known for which it has been proved that
Simulated Annealing is sufficiently more effective than the
Metropolis algorithm with optimum stationary temperature

Artificially constructed problems exist, for which this could be
shown
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Evolutionary algorithms

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Utilise evolution principles for optimisation purposes

Evolutionary algorithms combine Genetic algorithms, Evolution
strategies, Evolutionary programming and Genetic programming
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Restrictions of evolutionary approaches

It has been argued that

Problem specific algorithms better than evolutionary on small
subset of problems

Evolutionary algorithms better on average over all problems

Evolutionary algorithms proposed as general purpose optimisation
scheme
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Restrictions of evolutionary approaches
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Restrictions of evolutionary approaches

Can an algorithm be suited for ’all’ problems?

Distinct coding of the search space

Various fitness functions

What does ’all problems’ mean?

All possible representations and sizes of search space

All possible fitness functions

Every single point is the optimum point in several of these
problems

Can one algorithm be better on average than another algorithm on
’all’ problems?
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Restrictions of evolutionary approaches

Can an algorithm be suited for ’all’ problems?

Distinct coding of the search space

Various fitness functions

What does ’all problems’ mean?

All possible representations and sizes of search space

All possible fitness functions

Every single point is the optimum point in several of these
problems

Can one algorithm be better on average than another algorithm on
’all’ problems?
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Restrictions of evolutionary approaches

Wolpert and Macready formalised this assertion:18

Set of all functions f : S →W given by F

S and W finite (every computation on physical computers
only has finite resources)

Fitness function evaluated only once per search point

A(f ) is number of points evaluated until optimum is found

18
D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Optimisation, IEEE Transactions on

Evolutionary Computation 1, 67, 1997.
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Restrictions of evolutionary approaches

No free lunch theorem
Assume that the average performance of an algorithm in the No
Free Lunch Scenario for S and W is given by AS ,W , the average
over all A(f ), f ∈ F . Given two algorithms A and A′, we obtain
AS ,W = A′S ,W

This means that two arbitrary algorithms perform equally well
on average on all problems
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
W.l.o.g.: W = {1, . . . ,N}
We consider sets Fs,i ,N of all functions f on a search space of
non-visited search points of size s with at least one x with f (x) > i
Observe that for every function f and every permutation π also fπ
belongs to Fs,i ,N
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Proof by induction over s := |S |.
Induction start: s = 1

Every algorithm has to choose the single optimum search point
with its first request.
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Induction: s − 1→ s
Define a : S → N so that ∀x ∈ S the share of functions with
f (x) = j is exactly a(j).

This is independent of x , since all permutations fπ of a function f
also belong to Fs,i ,N

a(j) is therefore the probability to choose a search point with
fitness value j (Independent of the concrete algorithm A)
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Induction: s − 1→ s

With probability a(j) an algorithm A finds a search point with
fitness value j .

Count of functions f (x) = j is equal to the number of functions
fπ(y) = j , since all permutations of f are also in Fs,i ,N .

The probability to achieve a fitness value j > i is therefore
independent of the algorithm.
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Induction: s − 1→ s

With probability a(j) an algorithm A finds a search point with
fitness value j .

If j ≤ i , x is not optimal in scenario Fs,i ,N and the new scenario is
Fs−1,i ,N
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Summary – in other words:

For any two algorithms we can state a suitable permutation of the
Problem-function for one problem (i.e. state another problem), so
that both algorithms in each iteration request identical search
points.

Especially, since every search point could be optimal, there are
always algorithms that request the optimal search point right
from the start.
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Restrictions of evolutionary approaches

NFL is possible, since ALL algorithms and ALL problems are
considered

Is there an NFL valid in smaller, more realistic scenarios?

In 19 a similar theorem was proved for more realistic problem
scenarios.

19
S. Droste, T. Jansen and I. Wegener, Perhaps not a free lunch but at least a free appetizer, Proceedings of

the 1st Genetic and Evolutionary Computation Conference, 1999.

Selected Topics of Pervasive Computing



Intro Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic

Design aspects of evolutionary algorithms

Selection principles

Uniform selection
Individuals chosen uniformly at random

Deterministic selection
Deterministically choose the highest rated individuals for the
selection

Threshold selection
Candidates for offspring population drawn uniformly at random
from the t highest rated individuals
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Design aspects of evolutionary algorithms

Selection principles

Fitnessproportional selection

For population xi , . . . , xn individual xi chosen with

p(xi ) =
f (xi )

f (x1) + · · ·+ f (xn)

Draw random variable u from [0, 1] and consider xi if

p(x1) + · · ·+ p(xi−1) < u ≤ p(x1) + · · ·+ p(xi )

Frequently applied for evolutionary approaches
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Design aspects of evolutionary algorithms

Selection principles

Problems with Fitnessproportional selection

Linear modification of the fitness function (f → f + c) results
in different behaviour
When fitness values sufficiently separated, selection is nearly
deterministic
When deviation in fitness values is small relative to absolute
values, similar to uniform selection
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Design aspects of evolutionary algorithms
Variation – Mutation

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Mutation creates one offspring individual from one individual

Operators are designed for specific search spaces

Shall apply only few modifications of individuals on average

Distant individuals have smaller probability
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Evolutionary algorithms

Mutation operators for individuals from Bn (similar operators for
other search spaces):

Standard bit mutation

Offspring individual created bit-wise from parent individual

Every bit ’flipped’ with probability pm

Common choice: pm = 1
n

1 bit mutation

Offspring individual identical in all but one bit.

This bit chosen uniformly at random from all n bits
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Design aspects of evolutionary algorithms

Variation – Crossover

Crossover typically takes two individuals and results in one or
two offspring individuals

Also crossover of more than two individuals possible
Often generalisations of the two-individual case

Distinct crossover methods for various search spaces

Crossover parameter pc specifies the probability with which
crossover (and not mutation) is applied for one selected
individual

In some cases (e.g. binary coded numbers) not all positions in
the individual string are allowed to apply crossover on
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Design aspects of evolutionary algorithms

Typical crossover variants

One-point crossover

k-point crossover

Uniform crossover

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
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Evolutionary algorithms

Crossover operators for Bn

(Operators for other search spaced similar)

One-point crossover: Individual x ′′ from two individuals x and x ′

according to uniformly determined crossover position:

x ′′j =

{
xj if j ≤ i
x ′j if j > i
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Evolutionary algorithms

Crossover operators for Bn

k-point crossover: Choose k ≤ n positions uniformly at random:

x1 = x11, x1,2, . . . , x1,k1 |x1k1+1, . . . , x1k2 |x1k2+1, . . . , x1n

x2 = x21, x2,2, . . . , x2,k1 |x2k1+1, . . . , x2k2 |x2k2+1, . . . , x2n

y1 = x11, x1,2, . . . , x1,k1 |x2k1+1, . . . , x2k2 |x1k2+1, . . . , x1n

y2 = x21, x2,2, . . . , x2,k1 |x1k1+1, . . . , x1k2 |x2k2+1, . . . , x2n
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Evolutionary algorithms

Crossover operators for Bn

Uniform crossover: Each bit chosen with uniform probability from
one of the parent individuals
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Design aspects of evolutionary algorithms

Discussion

Evolutionary algorithms are easy to implement when
compared to some complex specialised approaches

However, Evolutionary algorithms are computationally
complex

It is therefore beneficial to implement efficient variants to the
distinct methods
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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