
Transport Layer – Part I

Telematics, Winter 2009/2010

Chapter 4: The Transport Layer

4: Transport Layer

5: Application Layer

3-2Transport Layer

1: Physical Layer

2: Link Layer

3: Network Layer

Chapter 4: The Transport Layer

Our goals:

o understand principles

behind transport layer

services:

o multiplexing/demultiplex

ing

o learn about transport layer

protocols in the Internet:

o UDP: connectionless transport

o TCP: connection-oriented

transport

3-3

ing

o reliable data transfer

o flow control

o congestion control

transport

o TCP congestion control

Transport Layer

Transport Layer

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

3-4

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of congestion

control

o 3.7 TCP congestion control

Transport Layer

Transport services and protocols

o provide logical communication

between app processes running

on different hosts

o transport protocols run in end

systems

o send side: breaks app

messages into segments,

application

transport

network

data link

physical

3-5

messages into segments,

passes to network layer

o rcv side: reassembles

segments into messages,

passes to app layer

o more than one transport protocol

available to apps

o Internet: TCP and UDP

application

transport

network

data link

physical

Transport Layer

Transport vs. network layer

o transport layer: logical

communication between

processes

o network layer: logical

communication between

hosts processes

o relies on & enhances,

network layer services

3-6Transport Layer

hosts

Transport Protocol: Analogy

Company M Company G

CEO Chairman CSA CEO TP PP
CEO = Chief Executive Officer

CSA = Chief Software Architect

TP = Technology President

PP = Products President

Steve Bill Ray Eric Sergey Larry

3-7Transport Layer

Secretary M Secretary G

Post man M Post man G

Transporter driver Transporter driver

Road

Transport Protocol: Analogy

Company M Company G

CEO Chairman CSA TP CEO PP
CEO = Chief Executive Officer

CSA = Chief Software Architect

TP = Technology President

PP = Products President

Steve Bill Ray Sergey Eric Larry

3-8Transport Layer

Secretary M Secretary G

Post man M Post man G

Road

Transporter driver Transporter driver

Transport Protocol: Analogy

o Secretary service

(Transport Layer): logical

communication between

o Postal service (Network

Layer): logical

communication between communication between

employees of G und M.

o relies on & enhances,

postal services

3-9Transport Layer

communication between

company buildings.

Transport Protocol: Analogy

Emp.1 Emp.2 Emp.3

Secretary 4: Transport Layer (protocols)

5: App. Layer (processes)

Company Host

3-10Transport Layer

Post man

Lorry driver

1: Physical Layer (medium)

2: Link Layer (protocols)

3: Network Layer (protocol)

Road

Internet transport-layer protocols

o unreliable, unordered

delivery: UDP

o no-frills extension of “best-

effort” IP

o reliable, in-order delivery

(TCP)

application

transport

network

data link

physical

network

data link

physical

network

network

data link

physical

(TCP)

o congestion control

o flow control

o connection setup

o services not available:

o delay guarantees

o bandwidth guarantees

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

application

transport

network

data link

physical

3-11Transport Layer

Excursus: Sockets

Socket API

o introduced in BSD4.1 UNIX, 1981

o explicitly created, used, released

by apps

o client/server paradigm

a host-local,

application-created,

OS-controlled interface (a

“door”) into which

socket

o two types of transport service

via socket API:

o unreliable datagram

o reliable, byte stream-

oriented

“door”) into which

application process can both

send and

receive messages to/from

another application process

3-12Transport Layer

Excursus: Socket programming with TCP

Socket: a door between application process and end-end-

transport protocol (UDP or TCP)

TCP service: reliable transfer of bytes from one process to

another

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

internet

3-13Transport Layer

Excursus: Socket programming with TCP

Client must contact server

o server process must first be

running

o server must have created

socket (door) that welcomes

client’s contact

o When contacted by client, server

TCP creates new socket for

server process to communicate

with client

o allows server to talk with

multiple clients

source port numbers used to
Client contacts server by:

o creating client-local TCP socket

o specifying IP address, port

number of server process

o When client creates socket:

client TCP establishes

connection to server TCP

o source port numbers used to

distinguish clients

TCP provides reliable, in-order

transfer of bytes (“pipe”)

between client and server

application viewpoint

3-14Transport Layer

Transport Layer

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-15

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of congestion

control

o 3.7 TCP congestion control

Multiplexing/demultiplexing

= process= socket

delivering received segments

to correct socket

Demultiplexing at rcv host:

gathering data from multiple sockets,

enveloping data with header

(later used for demultiplexing)

Multiplexing at send host:

Transport Layer 3-16

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

1026

SkypeICQ
1026

Skype

1025

ICQ

host 1 host 2 host 3

1025

How demultiplexing works

o host receives IP datagrams

o each datagram has source IP

address, destination IP

address

o each datagram carries 1

transport-layer segment

o each segment has source,

source port # dest port #

32 bits

other header fields

Transport Layer 3-17

o each segment has source,

destination port number

o host uses IP addresses & port

numbers to direct segment to

appropriate socket

application

data

(message)

TCP/UDP segment format

Connectionless demultiplexing

o Create sockets with port

numbers:

DatagramSocket clientSocket =

new DatagramSocket();

o When host receives UDP

segment:

o checks destination port

number in segment

o directs UDP segment to

socket with that port

Transport Layer 3-18

DatagramSocket serverSocket =

new DatagramSocket(6428);

o UDP socket identified by two-

tuple:

(dest IP address, dest port number)

socket with that port

number

o IP datagrams with different

source IP addresses and/or

source port numbers

directed to same socket

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

P1P1P2

SP provides

“return

Transport Layer 3-19

Client

IP:B

server

IP: C

SP: 6428

DP: 5775

SP: 5775

DP: 6428

“return

address”

Connection-oriented demux

o TCP socket identified by 4-

tuple:

o source IP address

o source port number

o dest IP address

o Server host may support

many simultaneous TCP

sockets:

o each socket identified by its

own 4-tuple

Transport Layer 3-20

o dest IP address

o dest port number

o recv host uses all four

values to direct segment to

appropriate socket

o Web servers have different

sockets for each connecting

client

Connection-oriented demux (cont)

Client

IP:B

P1

client

IP: A

P1P2P4

server

IP: C

P5 P6 P3

SP: 5775

DP: 80

Transport Layer 3-21

SP: 9157DP: 80

SP: 9157

DP: 80

D-IP:C

S-IP: A

D-IP:C

S-IP: B

DP: 80

D-IP:C
S-IP: B

SP:9157 !

Connection-oriented demux (cont)

Client

IP:B

P1

client

IP: A

P1P2

server

IP: C

P3

SP: 5775

DP: 80

P4 (Apache)

Transport Layer 3-22

SP: 9157DP: 80

SP: 9157

DP: 80

D-IP:C

S-IP: A

D-IP:C

S-IP: B

DP: 80

D-IP:C
S-IP: B

SP:9157

Transport Layer

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-23

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of congestion

control

o 3.7 TCP congestion control

The Problem with TCP

o TCP offers a reliable

and easy to use

transport protocol to

programmers.
Congestion control

o If a traffic jam is

detected on a path,

sender decreases

sending rate

“dramatically”.o Congestion control

o Retransmissions etc.

o However congestion

control imposes

transmission-rate

constraints.

“dramatically”.

o Problem: One cannot

“switch” off functions

of TCP ex. Congestion

control.

3-24Transport Layer

UDP: User Datagram Protocol [RFC 768]

o “no frills,” “bare bones”

Internet transport protocol

o “best effort” service, UDP

segments may be:

o lost

o delivered out of order to

Why is there a UDP?

o no connection establishment

(which can add delay)

o simple: no connection state

(buffers & parameters) at

Transport Layer 3-25

o delivered out of order to

app

o connectionless:

o no handshaking between

UDP sender, receiver

o each UDP segment handled

independently of others

(buffers & parameters) at

sender, receiver

o small segment header (8 bytes

v.s. 20 bytes)

o no congestion control &

retransmission: UDP can blast

away as fast as desired (e.g.

used by VOIP)

UDP: more

o often used for streaming

multimedia apps

o loss tolerant

o rate sensitive

o other UDP uses

o DNS

source port # dest port #

32 bits

Application

data

length checksum

Length, in

bytes of UDP

segment,

including

header

Transport Layer 3-26

o DNS

o SNMP

o reliable transfer over UDP: add

reliability at application layer

o application-specific error

recovery!

o ex. ACK/NAK,

retransmissions (non-

trivial).

data

(message)

ex.

- DNS query

- audio sample

UDP segment format

header

UDP checksum

Sender:

o treat segment contents as

sequence of 16-bit integers

Receiver:

o compute checksum of received

segment

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Transport Layer 3-27

sequence of 16-bit integers

o checksum: addition (1’s

complement sum) of segment

contents

o sender puts checksum value

into UDP checksum field

segment

o check if computed checksum

equals checksum field value:

o NO - error detected

o YES - no error detected. But

maybe errors nonetheless?

More later ….

UPD checksum example

o Lets take the word

“hi” (8bit ASCII)

o Convert it to binary
o h = 01101000

o UDP checksum works

with 16 Bit words, but

we use 8 Bits for

simplicity

o i = 01101001

o Add both words
01101000 (h)

+ 01101001 (i)

11010001 (h+i)

o The 1s complement is

obtained by inverting

ones to zeros and vice

versa.
o 11010001 -> 00101110 (checksum)

1-28Transport Layer

UPD checksum example

o Check (unaltered bits):

01101000 (h)

+ 01101001 (i)

11010001 (h+i)

+ 00101110 (checksum)

source port # dest port #

32 bits

UDP segment

length 00101110

+ 00101110 (checksum)

11111111 (OK)

o Check (altered bits):

01101000 (h)

+ 01101001 (i)

11010011 (h+i)

+ 00101110 (checksum)

100000001 (NOK!)

1-29Transport Layer

01101000 01101001

(h) (i)

UDP checksum

o Why error detection

in the first place?

o Link Layer provides

o IP is designed to run

on any layer 2

protocol (ethernet,

PPP, 802.11, 802.16).
o Link Layer provides

CRC! (Ethernet)

o No guarantee for:
o link-to-link reliability (e.g.

non ethernet)

o memory error detection on

routers

o End-to-end error

detection is safety

measure

o UPD does not recover

from errors

(discard/warning)

1-30Transport Layer

Transport Layer

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-31

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of congestion

control

o 3.7 TCP congestion control

Principles of Reliable data transfer

o important in app., transport, link layers

o top-10 list of important networking topics!

Transport Layer 3-32

o characteristics of unreliable channel will determine complexity of

reliable data transfer protocol (rdt)

Principles of Reliable data transfer

o important in app., transport, link layers

o top-10 list of important networking topics!

Transport Layer 3-33

o characteristics of unreliable channel will determine complexity of

reliable data transfer protocol (rdt)

Principles of Reliable data transfer

o important in app., transport, link layers

o top-10 list of important networking topics!

Transport Layer 3-34

o characteristics of unreliable channel will determine complexity of

reliable data transfer protocol (rdt)

Reliable data transfer: getting started

send receive

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

deliver_data(): called by

rdt to deliver data to upper

Transport Layer 3-35

send

side

receive

side

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

Reliable data transfer: getting started

We’ll:

o incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)

o consider only unidirectional data transfer

o but control info will flow on both directions!

use finite state machines (FSM) to specify sender,

Transport Layer 3-36

o use finite state machines (FSM) to specify sender,

receiver

o Use generic term “packet” rather than “segment”

Finite State Machine

o FSM is a model of behavior composed of a finite

number of

o states

o transitions between states on events

o actions taken upon eventso actions taken upon events

o Necessary to define the behavior of our protocol,

prior to implementation

1-37Transport Layer

State 1 State 2

event causing state transition

actions taken on state transition

Rdt1.0: reliable transfer over a reliable channel

o Assumption: underlying channel perfectly reliable

o no bit errors

o no loss of packets

o separate FSMs for sender, receiver:

o sender sends data into underlying channel

o receiver read data from underlying channel

Transport Layer 3-38

o receiver read data from underlying channel

o We will first look at an analogy with the secretary

then the state machines.

Rdt1.0: reliable transfer over a reliable channel (Analogy)

Waiting

for tasks

from above

o The secretary from

our previous example

has one state

1-39Transport Layer

Secretary M
o He waits for tasks

from his boss

o Task is sending letters

Rdt1.0: reliable transfer over a reliable channel (Analogy)

Sender

Bill

Task from Bill:

send letter

Action:

Put letter in envelope

Give letter to Postman

1-404: Transport Layer

Secretary M

Post man M

event → transition

transition → action

Rdt1.0: reliable transfer over a reliable channel (Analogy)

Waiting

for tasks

from above

o The secretary goes

1-414: Transport Layer

Secretary M

o The secretary goes

back to his state,

waiting for more

tasks.

Rdt1.0: reliable transfer over a reliable channel

Wait for

call from

above packet =

make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

1-424: Transport Layer

udt_send(packet)

sender receiver

event → transition

transition → action

Λ = no event/action

Rdt2.0: channel with bit errors

o underlying channel may flip bits in packet

o checksum to detect bit errors

o the question: how to recover from errors?

o Analogy:

o Imagine you dictate phone number over cell phone to friend.

00101110

Transport Layer 3-43

o Imagine you dictate phone number over cell phone to friend.

o Bad reception may scramble your voice.

You Friend

0176

OK

1234

Not OK, repeat please

1234

OK

Rdt2.0: channel with bit errors

o acknowledgements (ACKs): receiver explicitly tells

sender that pkt received OK

o negative acknowledgements (NAKs): receiver

explicitly tells sender that pkt had errors

Transport Layer 3-44

explicitly tells sender that pkt had errors
o sender retransmits pkt on receipt of NAK

o new mechanisms in rdt2.0 (beyond rdt1.0):

o error detection

o receiver feedback: control msgs (ACK,NAK) rcvr->sender

o Automatic Repeat reQuest type of protocol (ARQ)

rdt2.0: FSM specification

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

receiver

rdt_send(data)

Transport Layer 3-45

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for

call from

belowsender

Λ

event → transition

transition → action

Λ = no event/action

rdt2.0 has a fatal flaw!

What happens if ACK/NAK

corrupted?

o sender doesn’t know what

happened at receiver!

o can’t just retransmit: possible

duplicate

Using only ACK + Sequence:

o We can discard NAK packets,

by using only ACK + Seq.#

o duplicate ACK at sender results

in same action as NAK:

Transport Layer 3-46

duplicate

Handling duplicates:

o sender retransmits current pkt

if ACK/NAK garbled

o sender adds sequence number

to each pkt

o receiver discards (doesn’t

deliver up) duplicate pkt

in same action as NAK:

retransmit current pkt

Sender sends one packet,

then waits for receiver

response

stop and wait

rdt2.2: sender, handles garbled ACKs

Wait for

call 0 f.

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

Transport Layer 3-47

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

Wait for

call 1 f.

above

Wait for

ACK or

NAK 1

Λ
Λ

event → transition

transition → action

Λ = no event/action

rdt2.2: receiver, handles garbled ACKs

rdt_rcv(rcvpkt) &&

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK,0, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

Transport Layer 3-48

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, 1,chksum)

udt_send(sndpkt)

Wait for

1 from

below udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt)

udt_send(sndpkt)

event → transition

transition → action

Λ = no event/action

rdt2.2: discussion

Sender:

o seq # added to pkt

o two seq. #’s (0,1) will

suffice. Why?

o must check if received

Receiver:

o must check if received

packet is duplicate

o state indicates whether 0

or 1 is expected pkt seq #

Transport Layer 3-49

o must check if received

ACK corrupted

o twice as many states

o state must “remember”

whether “current” pkt has

0 or 1 seq. #

or 1 is expected pkt seq #

o note: receiver can not

know if its last ACK

received OK at sender

rdt: What do we have so far?

o rdt 1.0
o simple transfer over reliable channel (unrealistic)

o rdt 2.0
o bit error prone channel (more realistic)

o checksum (data), ACK/NAK, retransmit

o but what if ACK corrupt?

1.0

2.0 '

o but what if ACK corrupt?

o rdt 2.2
o checksum (data & ACK)

o retransmit if ACK corrupt

o but what if data OK, but ACK corrupt? -> duplicate

o introduce sequence numbers (more states)

o slimed down: discard NAK by introducing seq. in ACK

o but what if channel looses packets?

3-50Transport Layer

2.2 '

''

rdt3.0: channels with errors and loss

New assumption: underlying

channel can also lose

packets (data or ACKs)

o checksum, seq. #, ACKs,

retransmissions will be of

help, but not enough

Approach: sender waits

“reasonable” amount of

time for ACK

o retransmits if no ACK received in

this time

Transport Layer 3-51

help, but not enough o if pkt (or ACK) just delayed (not

lost):

o retransmission will be

duplicate, but use of seq. #’s

already handles this

o receiver must specify seq # of

pkt being ACKed

o requires countdown timer

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

udt_send(sndpkt)

start_timer

timeoutWait for

call 0from

above

Λ

Transport Layer 3-52

Wait for

call 1 from

above

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

event → transition

transition → action

Λ = no event/action

…

rdt3.0 in action

Transport Layer 3-53

rdt3.0 in action

Transport Layer 3-54

Performance of rdt3.0

o rdt3.0 works, but performance stinks

o ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

dsmicrosecon8
bps10

bits8000
9

===
R

L
dtrans

Transport Layer 3-55

� U sender: utilization – fraction of time sender busy sending

U
sender =

.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

� 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

� network protocol limits use of physical resources!

bps10R

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

Transport Layer 3-56

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts

o range of sequence numbers must be increased

o buffering at sender and/or receiver

Transport Layer 3-57

o Two generic forms of pipelined protocols: go-Back-N, selective

repeat

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Transport Layer 3-58

ACK arrives, send next

packet, t = RTT + L / R

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

3 * L / R

RTT + L / R
=

Increase utilization

by a factor of 3!

Pipelining Protocols

Go-back-N: big picture:

o Sender can have up to N
unacked packets in
pipeline

o Rcvr only sends
cumulative acks

Selective Repeat: big pic

o Sender can have up to N
unacked packets in
pipeline

o Rcvr acks individual
packets

Transport Layer 3-59

Rcvr only sends
cumulative acks

o Doesn’t ack packet if
there’s a gap

o Sender has timer for
oldest unacked packet

o If timer expires, retransmit
all unacked packets

Rcvr acks individual
packets

o Sender maintains timer
for each unacked packet

o When timer expires,
retransmit only unack
packet

Go-Back-N (GBN) Demonstration

o Protocol Demo (Link)

o http://media.pearsoncmg.com/aw/aw_kurose_net

work_2/applets/go-back-n/go-back-n.htmlwork_2/applets/go-back-n/go-back-n.html

3-60Transport Layer

Chapter 4: Summary

o principles behind transport

layer services:

o multiplexing,

demultiplexing

o reliable data transfer Next:

flow controlo flow control

o congestion control

o instantiation and

implementation in the

Internet

o UDP

o TCP

Transport Layer 3-61

Thank you

Any questions?

