
Machine Learning and Pervasive Computing

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

21.01.2015



Markov HMM Probabilistic Graphical Models

Overview and Structure
22.10.2014 Organisation
22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

29.10.2014 Machine Learning Basics (Toolchain, Features, Metrics, Rule-based)

05.11.2014 A simple Supervised learning algorithm
12.11.2014 Excursion: Avoiding local optima with random search
19.11.2014 –
26.11.2014 Bayesian learner
03.12.2014 –
10.12.2014 Decision tree learner
17.12.2014 k-nearest neighbour
07.01.2015 Support Vector Machines
14.01.2015 Artificial Neural Networks and Self Organizing Maps
21.01.2015 Hidden Markov models and Conditional random fields
28.01.2015 High dimensional data, Unsupervised learning
04.02.2015 Anomaly detection, Online learning, Recom. systems

Machine Learning and Pervasive Computing



Markov HMM Probabilistic Graphical Models

Outline

Markov chains

Hidden Markov Models
Evaluation
Deconding
Learning

Probabilistic Graphical Models

Machine Learning and Pervasive Computing



Markov HMM Probabilistic Graphical Models

Markov chains

Markov processes

Intensively studied

Major branch in the theory of stochastic processes

A. A. Markov (1856 – 1922)

Extended by A. Kolmogorov to chains of infinitely many states

’Anfangsgründe der Theorie der Markoffschen Ketten mit
unendlich vielen möglichen Zuständen’ (1936) 1

1
A. Kolmogorov,Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen

Zuständen, 1936.
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Markov HMM Probabilistic Graphical Models

Markov chains

Theory applied to a variety of algorithmic problems

Standard tool in many probabilistic applications

Intuitive graphical representation

Suitable for graphical illustration of stochastic processes

Popular for their simplicity and easy applicability to huge set of
problems2

2
William Feller, An introduction to probability theory and its applications, Wiley, 1968.
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Markov HMM Probabilistic Graphical Models

Markov chains

Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurrence probability pi

Probability to observe sample sequence:

P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi

Dependent trials of events

Probability to observe specific sequence E1,E2, . . . ,Ei

obtained by conditional probability:

P(Ei |E1,E2, . . . ,Ei−1)
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Markov HMM Probabilistic Graphical Models

Markov chains

Independent random variables

Number of coin tosses until ’head’ is observed

Radioactive atoms always have same probability of decaying
at next trial

Dependent random variables

Knowledge that no car has passed for five minutes increases
expectation that it will come soon.

Coin tossing:

Probability that the cumulative numbers of heads and tails will
equalize at the second trial is 1

2
Given that they did not, the probability that they equalize after
two additional trials is only 1

4
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Markov HMM Probabilistic Graphical Models

Markov property

In the theory of stochastic processes the described lack of memory
is connected with the Markov property.

Outcome depends exclusively on outcome of directly preceding trial

Every sequence (Ei ,Ej ) has a conditional probability pij

Additionally: Probability ai of the event Ei
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Markov HMM Probabilistic Graphical Models

Markov chains

Markov chain

A sequence of observations E1,E2, . . . is called a Markov chain if
the probabilities of sample sequences are defined by

P(E1,E2, . . . ,Ei ) = a1 · p12 · p23 · · · · · p(i−1)i .

and fixed conditional probabilities pij that the event Ei is observed
directly in advance of Ej .
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Markov HMM Probabilistic Graphical Models

Markov chains

Described by probability a for initial distribution and matrix P of
transition probabilities.

P =

 p11 p12 p13 · · ·
p21 p22 p23 · · ·

...
...

...
. . .


P is called a stochastic matrix

(Square matrix with non-negative entries that sum to 1 in each row)
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Markov HMM Probabilistic Graphical Models

Markov chains

pk
ij denotes probability that Ej is observed exactly k observations

after Ei was observed.

Calculated as the sum of the probabilities for all possible paths
EiEi1 · · ·Eik−1

Ej of length k

We already know
p1ij = pij

Consequently:

p2ij =
∑
ν

piν · pνj

p3ij =
∑
ν

piν · p2νj
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Markov HMM Probabilistic Graphical Models

Markov chains
By mathematical induction:

pn+1
ij =

∑
ν

piν · pn
νj

and
pn+m

ij =
∑
ν

pm
iν · pn

νj =
∑
ν

pn
iν · pm

νj

Similar to matrix P we can create a matrix Pn that contains all pn
ij

pn+1
ij obtained from Pn+1: Multiply row i of P with column j of Pn

Symbolically: Pn+m = PnPm.

Pn =

 pn
11 pn

12 pn
13 · · ·

pn
21 pn

22 pn
23 · · ·

...
...

...
. . .
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models

Make a sequence of decisions for a process that is not directly
observable3

Current states of the process might be impacted by prior states

HMM often utilised in speech recognition or gesture recognition

3
Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification, Wiley interscience, 2001.
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models

At every time step t the system is in an internal state ω(t)

Additionally, we assume that it emits a (visible) symbol v(t)

Only access to visible symbols and not to internal states
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models

Probability to be in state ωj (t) and emit symbol vk (t):

P(vk (t)|ωj (t)) = bjk

Transition probabilities: pij = P(ωj (t + 1)|ωi (t))

Emission probability: bjk = P(vk (t)|ωj (t))
Machine Learning and Pervasive Computing



Markov HMM Probabilistic Graphical Models

Hidden Markov Models

Central issues in hidden Markov models:

Evaluation problem Determine the probability that a particular
sequence of visible symbols V n was generated by a
given hidden Markov model

Decoding problem Determine the most likely sequence of hidden
states ωn that led to a specific sequence of
observations V n

Learning problem Given a set of training observations of visible
symbols, determine the parameters pij and bjk for a
given HMM
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Evaluation problem
Probability that model produces a sequence V n:

P(V n) =
∑
ωn

P(V n|ωn)P(ωn)

Also:

P(ωn) =
n∏

t=1

P(ω(t)|ω(t − 1))

P(V n|ωn) =
n∏

t=1

P(v(t)|ω(t))

Together:

P(V n) =
∑
ωn

n∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V n:

P(V n) =
∑
ωn

n∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Formally complex but straightforward

Naive computational complexity

O(cnn)
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V n:

P(V n) =
∑
ωn

n∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Computationally less complex algorithm:

Calculate P(V n) recursively

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) involves only v(t), ω(t) and
ω(t − 1)

αj (t) =


0 t = 0 and j 6= initial state
1 t = 0 and j = initial state
[
∑

i αi (t − 1)pij ] bjk otherwise (bjk leads to observed v(t))
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Evaluation problem

Forward Algorithm

Computational complexity: O(c2n)

Forward algorithm

1 initialise t ← 0, pij , bjk ,V
n, αj (0)

2 for t ← t + 1
3 j ← 0
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 until t = n
8 return P(V n)← αj (n) for the final state

9 end
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Decoding problem

Given a sequence V n, find most probable sequence of hidden states

Enumeration of every possible path will cost O(cn)

Not feasible
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Decoding problem

Given a sequence V n, find most probable sequence of hidden states

Decoding algorithm

1 initialise: path ← {}, t ← 0
2 for t ← t + 1
3 j ← 0;
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 j ′ ← arg maxj αj (t)
8 append ωj ′ to path

9 until t = n
10 return path

11 end
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Decoding problem

Computational time of the decoding algorithm

O(c2n)
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Learning problem

Determine the model parameters pij and bjk

Given: Training sample of observed values V n

No method known to obtain the optimal or most likely set of
parameters from the data

However, we can nearly always determine a good solution by
the forward-backward algorithm

General expectation maximisation algorithm

Iteratively update weights in order to better explain the
observed training sequences
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Learning problem

Probability that the model is in state ωi (t) and will generate the
remainder of the given target sequence:

βi (t) =


0 t = n and ωi (t) not final hidden state
1 t = n and ωi (t) final hidden state∑

j βj (t + 1)pijbjk otherwise (bjk leads to v(t + 1))
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Learning problem

αi (t) and βi (t) only estimates of their true values since transition
probabilities pij , bjk unknown

Probability of transition between ωi (t − 1) and ωj (t) can be
estimated

Provided that the model generated the entire training
sequence V n by any path

γij (t) =
α(t − 1)pijbjkβj (t)

P(V n|Ω)

Probability that model generated sequence V n:

P(V n|Ω)
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Learning problem

Calculate improved estimate for pij and bjk

pij =

∑n
t=1 γij (t)∑n

t=1

∑
k γik(t)

bjk =

∑n
t=1,v(t)=vk

∑
l γjl (t)∑n

t=1

∑
l γjl (t)

Start with rough estimates of pij and bjk

Calculate improved estimates

Repeat until some convergence is reached
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Markov HMM Probabilistic Graphical Models

Hidden Markov Models – Learning problem

Forward-Backward algorithm

1 initialise pij , bjk ,V
n, convergence criterion ∆, t ← 0

2 do t ← t + 1
3 compute pij (t)

4 compute bjk(t)

5 pij (t)← pij (t)

6 bjk (t)← bjk (t)
7 until maxi ,j ,k [pij (z)− pij (z − 1), bjk (t)− bjk(t − 1)] < ∆

(convergence achieved)

8 return pij ← pij (t), bjk ← bjk (t)
9 end
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Introduction

In the previous models, probabilistic inference was a
prominent aspect.

We will now discuss probabilistic graphical models

Some of the classification approaches discussed earlier can be
described by such models

Benefits of probabilistic graphical models

→ Simple way to visualise the structure of a probabilistic model

→ Insights into properties of the model, including conditional
independence

→ Graphical representation of complex computations required to
perform inference and learning
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Definition

A probabilistic graphical model comprises vertices connected
by edges

Vertices represent random variables or groups of variables
Edges represent probabilistic relationships between variables

Probabilistic graphical model

The graph captures the way in which the joint distribution
over all of the random variables can be decomposed into a
product of factors each depending only on a subset of variables
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models

Example

Consider an arbitrary joint distribution P[a, b, c].

We can then write

P[a, b, c] = P[b|a, c]P[a, c]

= P[b|a, c]P[c |a]P[a]
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models

Example

Similarly we can define a joint distribution

P[x1, . . . , xn] = P[xn|x1, . . . , xn−1] . . .P[x2|x1]P[x1]

These graphs are fully connected.
(One edge between every pair of nodes)

The actual absence of links in the graph covers intersting
information about the properties of the class of distributions
represented
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Definition

A general distribution for a graph with n nodes is

P[x ] =
n∏

i=1

P[xi |parents of vertex xi ]

Remark: Bayesian networks are represented in this way
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Example: Bayesian Curve fitting

W Polynomial coefficients

X = (x1, . . . , xn)T Input data

Y = (y1, . . . , yn)T Observed data (Ground truth)

σ2 Noise variance

α representation of the precision of the Gaussian prior
over W

P[Y ,W ] = P[W ]
n∏

i=1

P[yi |W ]

(omitting deterministic parameters)
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Example: Bayesian Curve fitting

P[Y ,W |X , α, σ2] = P[W |α]
n∏

i=1

P[yi |W , xi , σ
2]
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Prediction of y given the model and a new sample x as

P[y ,Y ,W |x ,X , α, σ2] =

[
n∏

i=1

P[yi |W , xi , σ
2]

]
P[W |α]P[y |x ,W , σ2]

Sum rule of probability leads to predictive distribution for y :

P[y |x ,X , α,Y , σ2] ∝
∫
P[y ,Y ,W |x ,X , α, σ2]dW
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

Consider variables a, b and c and assume the conditional
distribution

P[a|b, c] = P[a|c]

Then: a is conditionally independent of b given c

Notation: a ⊥⊥ b | c

Importance of conditional independence in probabilistic models

Conditional independence in probabilistic models for pattern
recognition

simplifies the structure of a model and

the computations needed to perform inference and learning
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Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !
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Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !

Example

Assume a random experiment containing a biased
and a fair coin.

Biased: P[head] = 0.8, P[tail] = 0.2

Fair: P[head] = P[tail] = 0.5

The experiment consists of two steps:

1 Choose which coin to toss

2 Toss the coin twice
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !

Example

If we are ignorant of which coin we chose,
the result of the first toss impacts our
expectation of what we see in the second
toss:

→ e.g. if the first toss came out head, this will
increase our expectation to see head also in
the second toss
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !

Example

However, if we were given information about
which coin we chose, the x1 and x2
independent.

→ Since we know the distribution expected by
both coins, knowledge of the outcome of x1
does not change the expected outcome of x2
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b, c] = P[a|c]P[b|c]P[c]

If none of the variables are observed, we can
investigate whether a and b are independent by
marginalizing both sides with respect to c :

P[a, b] =
∑

c

P[a|c]P[b|c]P[c]

Since this does not factorize into P[a]P[b] in
general, we conclude

a 6⊥⊥ b | ∅
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

If, however, c is observed, we obtain

P[a, b|c] =
P[a, b, c]

P[c]

=
P[a|c]P[b|c]P[c]

P[c]

= P[a|c]P[b|c]

And thus obtain the conditional independence
property

a ⊥⊥ b | c
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Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b, c] = P[a]P[c |a]P[b|c]

Marginalizing over c leads to

P[a, b] = P[a]
∑

c

P[c |a]P[b|c]

= P[a]P[b|a]

This does not factorize into P[a]P[b] in general
and therefore

a 6⊥⊥ b | ∅
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Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b|c] =
P[a, b, c]

P[c]

=
P[a]P[c |a]P[b|c]

P[c]

= P[a|c]P[b|c]

And therefore

a ⊥⊥ b | c
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b, c] = P[a]P[b]P[c |a, b]

Marginalizing over c leads to

P[a, b] = P[a]P[b]

So, in this case, we obtain

a ⊥⊥ b | ∅
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Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b|c] =
P[a, b, c]

P[c]

=
P[a]P[b]P[c|a, b]

P[c]

Which does not in general factorize into
P[a|c]P[b|c] and so

a 6⊥⊥ b | c

This rule applies also if, instead of c , any its descendants are
observed !
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Probabilistic graphical models
Conditional independence between nodes of the graph
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Probabilistic graphical models
Conditional independence between nodes of the graph

D-separation

Consider a general directed graph in which A,B and C are
arbitrary nonintersecting sets of nodes

A is d-separated from B by C when all possible paths from A
to B contain a node such that either

a) the node is in the set C and the arrows meet head-to-tail or
tail-to-tail

b) the node is not in the set C nor any of its descendants and the
arrows meet head-to-head
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Probabilistic graphical models

The concept of d-separation helps us to understand the probability
distributions that are expressed by a particular graphical model:

We have seen above that the joint distribution of a graph is
given as its factorization:

P[x ] =
n∏

i=1

P[xi |parents of vertex xi ]

The graph literally filters those distributions which can express
it in terms of the factorization implied by the graph.
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Probabilistic graphical models

The concept of d-separation helps us to understand the probability
distributions that are expressed by a particular graphical model:

We have seen above that the joint distribution of a graph is
given as its factorization:

P[x ] =
n∏

i=1

P[xi |parents of vertex xi ]

The graph literally filters those distributions which can express
it in terms of the factorization implied by the graph.

It can be shown that the set of distributions that pass the filter is
precisely the set of distributions that fulfills the set of conditional
independence properties defined by the d-separation property.
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Probabilistic graphical models
Undirected graphical models

Undirected graphical models

Also graphical models that are described by undirected graphs
specify

a) a factorization

b) a set of conditional independence relations

Machine Learning and Pervasive Computing



Markov HMM Probabilistic Graphical Models

Probabilistic graphical models
Undirected graphical models

Assume three test of nodes A, B and C in such an undirected
graph

Conditional independence in undirected graphs

A ⊥⊥ B | C if all paths between A and B contain an observed
node from the set C

A 6⊥⊥ B | C if at least one path between A and B does not
contain any observed node.
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Probabilistic graphical models

Factorization rule for undirected graphs

Two nodes a and b in a graph are conditionally independent (given
all other nodes) if they are not connected by an edge

→ Since there is no direct path between the nodes

Therefore, the joint distribution described by the graph is given by
functions of the variables of the maximal cliques in the graph
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Probabilistic graphical models

The joint distribution is written as a product of potential functions
φC (XC ) over the maximal cliques XC of the graph:

P[X ] =
1

Z

∏
C

φC (XC )

Here, Z is a normalisation constant given by

Z =
∑

X

∏
C

φC (XC )

to ensure that the distribution P[X ] is correctly normalised.
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Probabilistic graphical models
Conditional random fields

Distinguishing between observed variables X and target variables
Y , in the unnormalized measure

P[X ,Y ] =
∏
C

φC (XC )

we can define a conditional random field as

P[Y |X ] =
1

Z (X )

∏
C

φC (XC )

Z (X ) =
∑

X

P[X ,Y ]

Compared to the Bayesian models represented in directed graphs,
the CRF removes from the model any dependency between the
input variables xi
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Outline

Markov chains

Hidden Markov Models
Evaluation
Deconding
Learning

Probabilistic Graphical Models
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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