
PYTHON

Introduction to Software-defined Networking

Block Course – Winter 2015/16

David Koll

Based on slides of Matt Huenerfauth
from the University of Pennsylvania

What is Python?

•An interpreted programming language
• …with strong similarities to PERL
• …with powerful typing and object oriented features.
• …with useful built-in types (lists, dictionaries).
• …with clean syntax, powerful extensions.

Introduction to SDN: Introduction to Python 3

4

Compiling and Interpreting

•Many languages require compiling

•Python is directly interpreted into machine instructions.

compile execute

outputsource code
Hello.java

byte code
Hello.class

interpret

outputsource code
Hello.py

Why Python in this course?

•Simple reason: Mininet

•Mininet is a emulation/virtualization tool to
develop, test and deploy (software-defined)
networks

•Written in…Python
• Has an API that you have to understand for this course!

Introduction to SDN: Introduction to Python 5

How will we teach Python?

• We expect that you are familiar with object oriented
programming
• We expect that you know at least one of C++/JAVA…
• …and how to use a development DIE (Eclipse, Emacs, …)

• We expect that you know the concepts of:
• Data types
• Variable declaration and assignment
• Control sequences (if/else, while, for, …)
• Functions
• Classes

• We will focus on a recap of the syntax and special issues of
Python here!

Introduction to SDN: Introduction to Python 6

TECHNICAL ISSUES

Installing & Running Python

Introduction to SDN: Introduction to Python 7

Some words ahead

•We will be using Python 2.7
• For differences to Python 3 (newer version), read online
• In short:

• 2.7 is default version on most UNIX OS distributions (e.g.
Ubuntu 14)

• 2.7 has better library support

• Note that Python 3 will be the future standard (but
differences are not that big)

Introduction to SDN: Introduction to Python 8

Installing Python

•Python for Windows from www.python.org.

•For UNIX: No installation should be required

•GUI development environments:
• Eclipse (PyDev)
• Emacs
• IDLE.
• Your favorite IDE or text editor!

Introduction to SDN: Introduction to Python 9

http://www.python.org/

Running Interactively on UNIX

On Unix…

% python

>>> 3+3

6

The ‘>>>’ is the Python prompt.

Introduction to SDN: Introduction to Python 10

Running Programs on UNIX

% python filename.py

You can create python files using emacs.

(There’s a special Python editing mode.)

Want to make *.py file executable? Add on top:
#!/pkg/bin/python

Introduction to SDN: Introduction to Python 11

UNDERSTANDING THE BASICS

Introduction to SDN: Introduction to Python 12

Whitespace

•Whitespace is meaningful in Python: especially
indentation and placement of newlines.
• Use a newline to end a line of code. (Not a semicolon like

in C++ or Java.)
• (Use \ when must go to next line prematurely.)

• No braces { } to mark blocks of code in Python…
• Use consistent indentation instead.

• The first line with a new indentation is considered outside of the
block.

• Often a colon appears at the start of a new block.

Introduction to SDN: Introduction to Python 13

Comments

•Start comments with # – the rest of line is ignored.

•Convention: “documentation string”
• in the first line of any new function or class that you

define.

def my_function(x, y):

“““This is the docstring. This

function does blah blah blah.”””

The code would go here...

Introduction to SDN: Introduction to Python 14

UNDERSTANDING ASSIGNMENT

Introduction to SDN: Introduction to Python 15

Names and References 3

• In Python, the basic datatypes integer, float, and
string are “immutable.”

•This doesn’t mean we can’t change the value of x…
For example, we could increment x.
>>> x = 3

>>> x = x + 1

>>> print x

4

Introduction to SDN: Introduction to Python 16

Names and References 4

• If we increment x, then what’s really happening is:
• The reference of name x is looked up.

• The value at that reference is retrieved.

• The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

• The name x is changed to point to this new reference.

• The old data 3 is garbage collected if no name still refers to it.

Type: Integer

Data: 3Name: x

Ref: <address1>

Introduction to SDN: Introduction to Python 17

Names and References 4

• If we increment x, then what’s really happening is:
• The reference of name x is looked up.

• The value at that reference is retrieved.

• The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

• The name x is changed to point to this new reference.

• The old data 3 is garbage collected if no name still refers to it.

Type: Integer

Data: 3Name: x

Ref: <address1>
Type: Integer

Data: 4

Introduction to SDN: Introduction to Python 18

Names and References 4

• If we increment x, then what’s really happening is:
• The reference of name x is looked up.

• The value at that reference is retrieved.

• The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

• The name x is changed to point to this new reference.

• The old data 3 is garbage collected if no name still refers to it.

Type: Integer

Data: 3Name: x

Ref: <address2>
Type: Integer

Data: 4

Introduction to SDN: Introduction to Python 19

Names and References 4

• If we increment x, then what’s really happening is:
• The reference of name x is looked up.

• The value at that reference is retrieved.

• The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

• The name x is changed to point to this new reference.

• The old data 3 is garbage collected if no name still refers to it.

Name: x

Ref: <address2>
Type: Integer

Data: 4

Introduction to SDN: Introduction to Python 20

Assignment 2

• For other data types (lists, dictionaries, user-defined types),
assignment works differently.
• These datatypes are “mutable.”
• When we change these data, we do it in place.
• We don’t copy them into a new memory address each time.
• If we type y=x and then modify y, both x and y are changed!
• We’ll talk more about “mutability” later.

>>> x = 3 x = some mutable object

>>> y = x y = x

>>> y = 4 make a change to y

>>> print x look at x

3 x will be changed as well

immutable mutable

Introduction to SDN: Introduction to Python 21

CONTAINER TYPES IN PYTHON

Introduction to SDN: Introduction to Python 22

Container Types

•Containers are built-in data types in Python.
• Can hold objects of any type (including their own type).
• There are three kinds of containers:

Tuples
• A simple immutable ordered sequence of items.

Lists
• Sequence with more powerful manipulations possible.

Dictionaries
• A look-up table of key-value pairs.

Contents can be of varying type!

Introduction to SDN: Introduction to Python 23

Lists

• Lists are defined using square brackets (and commas).

>>> li = [“abc”, 34, 4.34, 23]

• Strings are defined using quotes (“, ‘, or “““).

>>> st = “Hello World”

>>> st = ‘Hello World’

>>> st = “““This is a multi-line

string that uses triple quotes.”””

Introduction to SDN: Introduction to Python 24

Slicing: Return Copy of a Subset 1

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Return a copy of the container with a subset of the
original members. Start copying at the first index,
and stop copying before the second index.

>>> t[1:4]

(‘abc’, 4.56, (2,3))

You can also use negative indices when slicing.
>>> t[1:-1]

(‘abc’, 4.56, (2,3))

Introduction to SDN: Introduction to Python 25

Slicing: Return Copy of a Subset 2

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Omit the first index to make a copy starting from the
beginning of the container.

>>> t[:2]

(23, ‘abc’)

Omit the second index to make a copy starting at
the first index and going to the end of the container.

>>> t[2:]

(4.56, (2,3), ‘def’)

Introduction to SDN: Introduction to Python 26

Copying the Whole Container

You can make a copy of the whole tuple using [:].
>>> t[:]

(23, ‘abc’, 4.56, (2,3), ‘def’)

So, there’s a difference between these two lines:
>>> list2 = list1 # 2 names refer to 1 ref

Changing one affects both

>>> list2 = list1[:] # Two copies, two refs

They’re independent

Introduction to SDN: Introduction to Python 27

The ‘in’ Operator

•Boolean test whether a value is inside a container:
>>> t = [1, 2, 4, 5]

>>> 3 in t

False

>>> 4 in t

True

>>> 4 not in t

False

•Be careful: the ‘in’ keyword is also used in the
syntax of other unrelated Python constructions:
“for loops” and “list comprehensions.”

Introduction to SDN: Introduction to Python 28

Operations on Lists Only 1

•Many more operations we can perform on
(mutable) lists than on (immutable) tuples.

•But: lists not as fast as tuples.
• Trade-off.

Introduction to SDN: Introduction to Python 29

Operations on Lists Only 2

>>> li = [1, 2, 3, 4, 5]

>>> li.append(‘a’)

>>> li

[1, 2, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i’)

>>>li

[1, 2, ‘i’, 3, 4, 5, ‘a’]

Introduction to SDN: Introduction to Python 30

Operations on Lists Only 3

• ‘+’ vs ‘extend’?
• + creates a fresh list (with a new memory reference)

• extend operates on list li in place.

>>> li.extend([9, 8, 7])

>>>li

[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

• Extend takes a list as an argument. Append takes a singleton.

>>> li.append([9, 8, 7])

>>> li

[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [9, 8, 7]]

Introduction to SDN: Introduction to Python 31

Operations on Lists Only 4

>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

>>> li.index(‘b’) # index of first occurrence

1

>>> li.count(‘b’) # number of occurrences

2

>>> li.remove(‘b’) # remove first occurrence

>>> li

[‘a’, ‘c’, ‘b’]

Introduction to SDN: Introduction to Python 32

Operations on Lists Only 5

>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*

>>> li

[8, 6, 2, 5]

>>> li.sort() # sort the list *in place*

>>> li

[2, 5, 6, 8]

Introduction to SDN: Introduction to Python 33

Tuples vs. Lists

• Lists slower but more powerful than tuples.
• Lists can be modified, and they have lots of handy

operations we can perform on them.
• Tuples are immutable and have fewer features.

•We can always convert between tuples and lists
using the list() and tuple() functions.
li = list(tu)

tu = tuple(li)

Introduction to SDN: Introduction to Python 34

GENERATING LISTS USING

“LIST COMPREHENSIONS”

Introduction to SDN: Introduction to Python 35

List Comprehensions

•A powerful feature of the Python language.
• Generate a new list by applying a function to every

member of an original list.

•The syntax of a “list comprehension” is different
from what you may have seen so far

Introduction to SDN: Introduction to Python 36

List Comprehensions Syntax 1

>>> li = [3, 6, 2, 7]

>>> [elem*2 for elem in li]

[6, 12, 4, 14]

[expression for name in list]
• Where expression is some calculation or operation acting

upon the variable name.

• Results are stored in a new list!

Introduction to SDN: Introduction to Python 37

List Comprehension Syntax 2

•Also possible on containers:

>>> li = [(‘a’, 1), (‘b’, 2), (‘c’, 7)]

>>> [n * 3 for (x, n) in li]

[3, 6, 21]

Introduction to SDN: Introduction to Python 38

List Comprehension Syntax 3

•The expression of a list comprehension could also
contain user-defined functions.

>>> def subtract(a, b):

return a – b

>>> oplist = [(6, 3), (1, 7), (5, 5)]

>>> [subtract(y, x) for (x, y) in oplist]

[-3, 6, 0]

Introduction to SDN: Introduction to Python 39

Filtered List Comprehension 1

[expression for name in list if filter]

•Exclude some list members from applying
comprehension

•First check each member of the list to see if it
satisfies a filter condition.

Introduction to SDN: Introduction to Python 40

Filtered List Comprehension 2

[expression for name in list if filter]

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem * 2 for elem in li if elem > 4]

[12, 14, 18]

•Only 6, 7, and 9 satisfy the filter condition.

Introduction to SDN: Introduction to Python 41

Nested List Comprehensions

•Nested comprehensions possible.

>>> li = [3, 2, 4, 1]

>>> [elem*2 for elem in

[item+1 for item in li]]

[8, 6, 10, 4]

•The inner comprehension produces: [4, 3, 5, 2].

•The outer comprehension produces: [8, 6, 10, 4].

Introduction to SDN: Introduction to Python 42

DICTIONARIES

Introduction to SDN: Introduction to Python 43

Basic Syntax for Dictionaries 1

•Dictionaries store a mapping between a set of keys
and a set of values.
• Keys can be any immutable type.
• Values can be any type, and you can have different types

of values in the same dictionary.

•You can define, modify, view, lookup, and delete the
key-value pairs in the dictionary.

Introduction to SDN: Introduction to Python 44

Basic Syntax for Dictionaries 2

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’]

‘bozo’

>>> d[‘pswd’]

1234

>>> d[‘bozo’]

Traceback (innermost last):

File ‘<interactive input>’ line 1, in ?

KeyError: bozo

Introduction to SDN: Introduction to Python 45

Basic Syntax for Dictionaries 3

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’] = ‘clown’

>>> d

{‘user’:‘clown’, ‘pswd’:1234}

Note: Keys are unique.
Assigning to an existing key just replaces its value.

>>> d[‘id’] = 45

>>> d

{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

Note: Dictionaries are unordered.
New entry might appear anywhere in the output.

Introduction to SDN: Introduction to Python 46

Basic Syntax for Dictionaries 4

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> del d[‘user’] # Remove one.

>>> d

{‘p’:1234, ‘i’:34}

>>> d.clear() # Remove all.

>>> d

{}

Introduction to SDN: Introduction to Python 47

Basic Syntax for Dictionaries 5

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> d.keys() # List of keys.

[‘user’, ‘p’, ‘i’]

>>> d.values() # List of values.

[‘bozo’, 1234, 34]

>>> d.items() # List of item tuples.

[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

Introduction to SDN: Introduction to Python 48

FUNCTIONS IN PYTHON

range() function

• range() returns a list of numbers from 0 up to the
number we pass to it (non-inclusive).
• range(5) returns [0,1,2,3,4]

for x in range(5):
print x

• range([start], stop[, step])
range(4:10:2) returns 4,6,8

•Can also go backwards (range(4:-4:-2))

Introduction to SDN: Introduction to Python 50

Defining Functions

No header file or declaration of types of function or arguments.

def get_final_answer(filename):

“Documentation String”

line1

line2

return total_counter

The indentation matters…

Function definition begins with “def.” Function name and its arguments.

The keyword ‘return’ indicates the

value to be sent back to the caller.

Colon.

Calling a Function

•The syntax for a function call is:
>>> def myfun(x, y):

return x * y

>>> myfun(3, 4)

12

•Parameters in Python are “Call by Assignment.”
• Sometimes acts like “call by reference” and sometimes

like “call by value” in C++.
• Mutable datatypes: Call by reference.

• Immutable datatypes: Call by value.

Functions without returns

•All functions in Python have a return value

•Functions without a “return” will give the special
value None as their return value.
• None is used like NULL, void, or nil in other languages.
• Also logically equivalent to False.

Function overloading? No.

•There is no function overloading in Python.
• Unlike C++, a Python function is specified by its name

alone
• the number, order, names, or types of its arguments

cannot be used to distinguish between two functions
with the same name.

You can’t have two functions with the same name, even
if they have different arguments.

Treating Functions Like Data

•Functions are treated like first-class objects in the
language… They can be passed around like other
data and be arguments or return values of other
functions.

>>> def myfun(x):

return x*3

>>> def applier(q, x):

return q(x)

>>> applier(myfun, 7)

21

Assignment & Mutability

•When passing parameters to functions:
• Immutable data types are “call by value.”
• Mutable data types are “call by reference.”

If you pass mutable data to a function, and you change it
inside that function, the changes will persist after the

function returns.

Immutable data appear unchanged inside of functions to
which they are passed.

Introduction to SDN: Introduction to Python 56

SOME FANCY FUNCTION SYNTAX

Lambda Notation – Anonymous Functions

•Sometimes it is useful to define short functions
without having to give them a name: especially
when passed as an argument to another function.
>>> applier(lambda z: z * 4, 7)

28

• First argument to applier() is an unnamed function that
takes one input and returns the input multiplied by four.

• Note: only single-expression functions can be defined
using this lambda notation.

Default Values for Arguments

•Give default values for a function’s arguments when
defining it
• these arguments are optional when function is called.

>>> def myfun(b, c=3, d=“hello”):

return b + c

>>> myfun(5,3,”hello”)

>>> myfun(5,3)

>>> myfun(5)

All of the above function calls return 8.

The Order of Arguments

>>> def myfun(a, b, c):

return a-b

>>> myfun(2, 1, 43)

1

>>> myfun(c=43, b=1, a=2)

1

>>> myfun(2, c=43, b=1)

1

DEFINING CLASSES

Defining a Class

•Python doesn’t use separate class interface
definitions as in some languages.
• You just define the class and then use it.

•You can define a method in a class by including
function definitions within the scope of the class
block.
• Take care of proper indentation!

Definition of student

#class definition

class student:
“““A class representing a
student.”””

#init function?

#self argument?
def __init__(self,n,a):

self.full_name = n
self.age = a

def get_age(self):
return self.age

Constructor: __init__

•__init__ acts like a constructor for a class.

• Invoked upon instantiating a class

• b = student(“Bob”, 21)

__init__ is passed “Bob” and 21.

Constructor: __init__

•__init__ can take any number of arguments.

•However, the first argument self in the definition
of __init__ is special…

Self

•The first argument of every class method is a
reference to the current instance of the class.
• By convention, this argument is named self.

• In __init__, self refers to the object currently
being created

• in other class methods, it refers to the instance
whose method was called.

• Similar to the keyword ‘this’ in Java or C++.
• But Python uses ‘self’ more often than Java uses ‘this.’

Self

•Although you must specify self explicitly when
defining the method, you don’t include it when
calling the method.

•Python passes it for you automatically.

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)

self.age = num

CREATING AND DELETING INSTANCES

Instantiating Objects

•There is no “new” keyword as in Java.

•You merely use the class name with () notation and
assign the result to a variable.

b = student(“Bob Smith”, 21)

•The arguments you pass to the class name are
actually given to its .__init__() method.

•User-defined classes are mutable!

No Need to “free”

•When you are done with an object, you don’t have
to delete or free it explicitly.

• Python has automatic garbage collection.

• Generally works well, few memory leaks.

• There’s also no “destructor” method for classes.

ACCESS TO ATTRIBUTES AND METHODS

Definition of student

class student:

“““A class representing a

student.”””

def __init__(self,n,a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

Traditional Syntax for Access

>>> f = student (“Bob Smith”, 23)

>>> f.full_name # Access an attribute.

“Bob Smith”

>>> f.get_age() # Access a method.

23

ATTRIBUTES

Two Kinds of Attributes

•The non-method data stored by objects are called
attributes. There’s two kinds:

• Data attribute:
• Variable owned by a particular instance of a class.

• Class attributes:
• Owned by the class as a whole.

• Called “static” variables in some languages.

• Good for class-wide constants or for building counter of
how many instances of the class have been made.

Data Attributes

• inside of the __init__() method.
• Inside the class, refer to data attributes using self – for

example, self.full_name

class teacher:

“A class representing teachers.”

def __init__(self,n):

self.full_name = n

def print_name(self):

print self.full_name

Class Attributes

• All instances of a class share one copy of a class attribute
• if any of the instances changes it, value is changed for all instances.

• Define class attributes outside of any method.

• Access them using self.__class__.name notation.

class sample: >>> a = sample()

x = 23 >>> a.increment()

def increment(self): >>> a.__class__.x

self.__class__.x += 1 24

Data vs. Class Attributes

class counter:

overall_total = 0

class attribute

def __init__(self):

self.my_total = 0

data attribute

def increment(self):

counter.overall_total = \

counter.overall_total + 1

self.my_total = \

self.my_total + 1

>>> a = counter()

>>> b = counter()

>>> a.increment()

>>> b.increment()

>>> b.increment()

>>> a.my_total

1

>>> a.__class__.overall_total

3

>>> b.my_total

2

>>> b.__class__.overall_total

3

INHERITANCE

Subclasses

• Inheritance works pretty much like in other
languages
• New class: “subclass.” Original: “parent” or “ancestor.”

•Syntax of defining a subclass:
class subclass(parent):

e.g.:

class student(person):

•Python has no ‘extends’ keyword like Java.
•Multiple inheritance is supported.

Definition of student

class person:

“A class representing a person.”

def __init__(self,n,a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

Definition of ai_student

class ai_student (person):

“A class extending person.”

def __init__(self,n,a,number):

student.__init__(self,n,a)

self.mat_num = number

def get_age():

print “Age: ” + str(self.age)

Redefining Methods

•Overwrite parent class methods if desired.

•Can still explicitly call the parent’s version of the
method.
parentClass.methodName(self, a, b, c)

The only time you ever explicitly pass ‘self’ as an
argument is when calling a method of an ancestor.

Redefining the __init__

•Same as for redefining any other method…
• You’ll often see something like this in the __init__

method of subclasses:

parentClass.__init__(self, x, y)

Private Data and Methods

•Any attribute or method with two leading
underscores is private.
• Note:

Names with two underscores at the beginning and the
end are for built-in methods or attributes for the class.

• Note:
There is no ‘protected’ status in Python; so, subclasses
would be unable to access these private data either.

IMPORTING AND MODULES

Importing and Modules

• Use classes & functions defined in another file.

• Like Java import, C++ include.

• Three formats of the command:
import somefile

from somefile import *

from somefile import className

What’s the difference?
What gets imported from the file and what name
you use to refer to it after its been imported.

File Handling

inflobj = open(‘data’, ‘r’) Open the file ‘data’ for input

S = inflobj.read() Read whole file into one String

S = inflobj.read(N) Reads N bytes (N >= 1)

L = inflobj.readlines() Returns a list of line strings

Files: Output

outflobj = open(‘data’, ‘w’) Open the file ‘data’

for writing

outflobj.write(S) Writes the string S to

file

outflobj.writelines(L) Writes each of the

strings in list L to file

outflobj.close() Closes the file

Example: Read a file and print line by line

fileptr = open(‘filename’)

somestring = fileptr.read()

for line in fileptr:
print line

fileptr.close()

Remember to close all opened files!

FINALLY: ERROR HANDLING

Exception Handling

• Errors are a kind of object in Python.
• More specific kinds of errors are subclasses of the

general Error class.

• You use the following commands to interact with
them:
• Try
• Except
• Finally
• Catch

