
Transport Layer – Part I

Computer Networks, Winter 2010/2011

Chapter 4: The Transport Layer

3-2Transport Layer

1: Physical Layer

2: Link Layer

3: Network Layer

4: Transport Layer

5: Application Layer

3-3

Chapter 4: The Transport Layer

Our goals:

o understand principles
behind transport layer
services:
o multiplexing/demultiplex

ing

o reliable data transfer

o flow control

o congestion control

o learn about transport layer
protocols in the Internet:
o UDP: connectionless transport

o TCP: connection-oriented
transport

o TCP congestion control

Transport Layer

3-4

Transport Layer

o 3.1 Transport-layer
services

o 3.2 Multiplexing and
demultiplexing

o 3.3 Connectionless
transport: UDP

o 3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer

3-5

Transport services and protocols

o provide logical communication
between app processes running
on different hosts

o transport protocols run in end
systems

o send side: breaks app
messages into segments,
passes to network layer

o rcv side: reassembles
segments into messages,
passes to app layer

o more than one transport protocol
available to apps

o Internet: TCP and UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

Transport Layer

Transport vs. network layer

o transport layer: logical
communication between
processes
o relies on & enhances,

network layer services

3-6Transport Layer

o network layer: logical
communication between
hosts

Transport Protocol: Analogy

3-7Transport Layer

Company M Company G

CEO Chairman CSA CEO TP PP
CEO = Chief Executive Officer

CSA = Chief Software Architect

TP = Technology President

PP = Products President

Steve Bill Ray Eric Sergey Larry

Secretary M Secretary G

Post man M Post man G

Transporter driver Transporter driver

Road

Transport Protocol: Analogy

3-8Transport Layer

Company M Company G

CEO Chairman CSA TP CEO PP
CEO = Chief Executive Officer

CSA = Chief Software Architect

TP = Technology President

PP = Products President

Steve Bill Ray Sergey Eric Larry

Secretary M Secretary G

Post man M Post man G

Road

Transporter driver Transporter driver

Transport Protocol: Analogy

o Secretary service
(Transport Layer): logical
communication between
employees of G und M.
o relies on & enhances,

postal services

3-9Transport Layer

o Postal service (Network
Layer): logical
communication between
company buildings.

Transport Protocol: Analogy

3-10Transport Layer

Emp.1 Emp.2 Emp.3

Secretary

Post man

Lorry driver

1: Physical Layer (medium)

2: Link Layer (protocols)

3: Network Layer (protocol)

4: Transport Layer (protocols)

5: App. Layer (processes)

Company Host

Road

Internet transport-layer protocols

o unreliable, unordered
delivery: UDP
o no-frills extension of “best-

effort” IP

o reliable, in-order delivery
(TCP)
o congestion control

o flow control

o connection setup

o services not available:
o delay guarantees

o bandwidth guarantees

application

transport

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

application

transport

network

data link

physical

3-11Transport Layer

Excursus: Sockets

Socket API
o introduced in BSD4.1 UNIX, 1981

o explicitly created, used, released
by apps

o client/server paradigm

o two types of transport service
via socket API:

o unreliable datagram

o reliable, byte stream-
oriented

a host-local,

application-created,

OS-controlled interface (a

“door”) into which

application process can both

send and

receive messages to/from

another application process

socket

3-12Transport Layer

Excursus: Socket programming with TCP

Socket: a door between application process and end-end-
transport protocol (UDP or TCP)

TCP service: reliable transfer of bytes from one process to
another

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

internet

3-13Transport Layer

Excursus: Socket programming with TCP

Client must contact server

o server process must first be
running

o server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

o creating client-local TCP socket

o specifying IP address, port
number of server process

o When client creates socket:
client TCP establishes
connection to server TCP

o When contacted by client, server
TCP creates new socket for
server process to communicate
with client

o allows server to talk with
multiple clients

o source port numbers used to
distinguish clients

TCP provides reliable, in-order

transfer of bytes (“pipe”)

between client and server

application viewpoint

3-14Transport Layer

Transport Layer 3-15

Transport Layer

o 3.1 Transport-layer
services

o 3.2 Multiplexing and
demultiplexing

o 3.3 Connectionless
transport: UDP

o 3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer 3-16

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

1026

SkypeICQ
1026

Skype

1025

ICQ

host 1 host 2 host 3

= process= socket

delivering received segments

to correct socket

Demultiplexing at rcv host:

gathering data from multiple sockets,

enveloping data with header

(later used for demultiplexing)

Multiplexing at send host:

1025

Transport Layer 3-17

How demultiplexing works

o host receives IP datagrams

o each datagram has source IP
address, destination IP
address

o each datagram carries 1
transport-layer segment

o each segment has source,
destination port number

o host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application

data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-18

Connectionless demultiplexing

o Create sockets with port
numbers:

DatagramSocket clientSocket =

new DatagramSocket();

DatagramSocket serverSocket =

new DatagramSocket(6428);

o UDP socket identified by two-
tuple:

(dest IP address, dest port number)

o When host receives UDP
segment:
o checks destination port

number in segment

o directs UDP segment to
socket with that port
number

o IP datagrams with different
source IP addresses and/or
source port numbers
directed to same socket

Transport Layer 3-19

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client

IP:B

P1P1P2

server

IP: C

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides

“return

address”

Transport Layer 3-20

Connection-oriented demux

o TCP socket identified by 4-
tuple:
o source IP address

o source port number

o dest IP address

o dest port number

o recv host uses all four
values to direct segment to
appropriate socket

o Server host may support
many simultaneous TCP
sockets:
o each socket identified by its

own 4-tuple

o Web servers have different
sockets for each connecting
client

Transport Layer 3-21

Connection-oriented demux (cont)

Client

IP:B

P1

client

IP: A

P1P2P4

server

IP: C

SP: 9157DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

SP:9157 !

Transport Layer 3-22

Connection-oriented demux (cont)

Client

IP:B

P1

client

IP: A

P1P2

server

IP: C

SP: 9157DP: 80

SP: 9157

DP: 80

P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

SP:9157

P4 (Apache)

Transport Layer 3-23

Transport Layer

o 3.1 Transport-layer
services

o 3.2 Multiplexing and
demultiplexing

o 3.3 Connectionless
transport: UDP

o 3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

The Problem with TCP

o TCP offers a reliable
and easy to use
transport protocol to
programmers.
o Congestion control

o Retransmissions etc.

o However congestion
control imposes
transmission-rate
constraints.

o If a traffic jam is
detected on a path,
sender decreases
sending rate
“dramatically”.

o Problem: One cannot
“switch” off functions
of TCP ex. Congestion
control.

3-24Transport Layer

Transport Layer 3-25

UDP: User Datagram Protocol [RFC 768]

o “no frills,” “bare bones”
Internet transport protocol

o “best effort” service, UDP
segments may be:

o lost

o delivered out of order to
app

o connectionless:

o no handshaking between
UDP sender, receiver

o each UDP segment handled
independently of others

Why is there a UDP?
o no connection establishment

(which can add delay)

o simple: no connection state
(buffers & parameters) at
sender, receiver

o small segment header (8 bytes
v.s. 20 bytes)

o no congestion control &
retransmission: UDP can blast
away as fast as desired (e.g.
used by VOIP)

Transport Layer 3-26

UDP: more

o often used for streaming
multimedia apps

o loss tolerant

o rate sensitive

o other UDP uses
o DNS

o SNMP

o reliable transfer over UDP: add
reliability at application layer

o application-specific error
recovery!

o ex. ACK/NAK,
retransmissions (non-
trivial).

source port # dest port #

32 bits

Application

data

(message)

ex.

- DNS query

- audio sample

UDP segment format

length checksum

Length, in

bytes of UDP

segment,

including

header

Transport Layer 3-27

UDP checksum

Sender:
o treat segment contents as

sequence of 16-bit integers

o checksum: addition (1’s
complement sum) of segment
contents

o sender puts checksum value
into UDP checksum field

Receiver:
o compute checksum of received

segment

o check if computed checksum
equals checksum field value:

o NO - error detected

o YES - no error detected. But
maybe errors nonetheless?
More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

UPD checksum example

o Lets take the word
“hi” (8bit ASCII)

o Convert it to binary
o h = 01101000

o i = 01101001

o Add both words
01101000 (h)

+ 01101001 (i)

11010001 (h+i)

o UDP checksum works
with 16 Bit words, but
we use 8 Bits for
simplicity

o The 1s complement is
obtained by inverting
ones to zeros and vice
versa.

o 11010001 -> 00101110 (checksum)

1-28Transport Layer

UPD checksum example

o Check (unaltered bits):

01101000 (h)

+ 01101001 (i)

11010001 (h+i)

+ 00101110 (checksum)

11111111 (OK)

o Check (altered bits):

01101000 (h)

+ 01101001 (i)

11010011 (h+i)

+ 00101110 (checksum)

100000001 (NOK!)

1-29Transport Layer

source port # dest port #

32 bits

01101000 01101001

(h) (i)

UDP segment

length 00101110

UDP checksum

o Why error detection
in the first place?

o Link Layer provides
CRC! (Ethernet)

o No guarantee for:
o link-to-link reliability (e.g.

non ethernet)

o memory error detection on
routers

o IP is designed to run
on any layer 2
protocol (ethernet,
PPP, 802.11, 802.16).

o End-to-end error
detection is safety
measure

o UPD does not recover
from errors
(discard/warning)

1-30Transport Layer

Transport Layer 3-31

Transport Layer

o 3.1 Transport-layer
services

o 3.2 Multiplexing and
demultiplexing

o 3.3 Connectionless
transport: UDP

o 3.4 Principles of reliable
data transfer

o 3.5 Connection-oriented
transport: TCP
o segment structure

o reliable data transfer

o flow control

o connection management

o 3.6 Principles of congestion
control

o 3.7 TCP congestion control

Transport Layer 3-32

Principles of Reliable data transfer

o important in app., transport, link layers

o top-10 list of important networking topics!

o characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

Transport Layer 3-33

Principles of Reliable data transfer

o important in app., transport, link layers

o top-10 list of important networking topics!

o characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

Transport Layer 3-34

Principles of Reliable data transfer

o important in app., transport, link layers

o top-10 list of important networking topics!

o characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

Transport Layer 3-35

Reliable data transfer: getting started

send

side

receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

Transport Layer 3-36

Reliable data transfer: getting started

We’ll:

o incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

o consider only unidirectional data transfer
o but control info will flow on both directions!

o use finite state machines (FSM) to specify sender,
receiver

o Use generic term “packet” rather than “segment”

Finite State Machine

o FSM is a model of behavior composed of a finite
number of

o states

o transitions between states on events

o actions taken upon events

o Necessary to define the behavior of our protocol,
prior to implementation

1-37Transport Layer

State 1 State 2

event causing state transition

actions taken on state transition

Transport Layer 3-38

Rdt1.0: reliable transfer over a reliable channel

o Assumption: underlying channel perfectly reliable
o no bit errors

o no loss of packets

o separate FSMs for sender, receiver:
o sender sends data into underlying channel

o receiver read data from underlying channel

o We will first look at an analogy with the secretary
then the state machines.

Rdt1.0: reliable transfer over a reliable channel (Analogy)

1-39Transport Layer

Secretary M

Waiting

for tasks

from above

o The secretary from
our previous example
has one state

o He waits for tasks
from his boss

o Task is sending letters

Rdt1.0: reliable transfer over a reliable channel (Analogy)

1-40Transport Layer

Sender

Bill

Secretary M

Post man M

event → transition

transition → action

Task from Bill:

send letter

Action:

Put letter in envelope

Give letter to Postman

Rdt1.0: reliable transfer over a reliable channel (Analogy)

1-41Transport Layer

Secretary M

Waiting

for tasks

from above

o The secretary goes
back to his state,
waiting for more
tasks.

Rdt1.0: reliable transfer over a reliable channel

1-42Transport Layer

Wait for

call from

above packet =

make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

event → transition

transition → action

L = no event/action

Transport Layer 3-43

Rdt2.0: channel with bit errors

o underlying channel may flip bits in packet
o checksum to detect bit errors

o the question: how to recover from errors?

o Analogy:

o Imagine you dictate phone number over cell phone to friend.

o Bad reception may scramble your voice.

You Friend

0176

OK
1234

Not OK, repeat please
1234

OK

00101110

Transport Layer 3-44

Rdt2.0: channel with bit errors

o acknowledgements (ACKs): receiver explicitly tells
sender that pkt received OK

o negative acknowledgements (NAKs): receiver
explicitly tells sender that pkt had errors
o sender retransmits pkt on receipt of NAK

o new mechanisms in rdt2.0 (beyond rdt1.0):

o error detection

o receiver feedback: control msgs (ACK,NAK) rcvr->sender

o Automatic Repeat reQuest type of protocol (ARQ)

Transport Layer 3-45

rdt2.0: FSM specification

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

belowsender

receiver

rdt_send(data)

L

event → transition

transition → action

L = no event/action

Transport Layer 3-46

rdt2.0 has a fatal flaw!

What happens if ACK/NAK
corrupted?

o sender doesn’t know what
happened at receiver!

o can’t just retransmit: possible
duplicate

Handling duplicates:
o sender retransmits current pkt

if ACK/NAK garbled

o sender adds sequence number
to each pkt

o receiver discards (doesn’t
deliver up) duplicate pkt

Using only ACK + Sequence:

o We can discard NAK packets,
by using only ACK + Seq.#

o duplicate ACK at sender results
in same action as NAK:
retransmit current pkt

Sender sends one packet,

then waits for receiver

response

stop and wait

Transport Layer 3-47

rdt2.2: sender, handles garbled ACKs

Wait for

call 0 f.

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

Wait for

call 1 f.

above

Wait for

ACK or

NAK 1

L
L

event → transition

transition → action

L = no event/action

Transport Layer 3-48

rdt2.2: receiver, handles garbled ACKs

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, 1,chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK,0, chksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt)

udt_send(sndpkt)

event → transition

transition → action

L = no event/action

Transport Layer 3-49

rdt2.2: discussion

Sender:

o seq # added to pkt

o two seq. #’s (0,1) will
suffice. Why?

o must check if received
ACK corrupted

o twice as many states
o state must “remember”

whether “current” pkt has
0 or 1 seq. #

Receiver:

o must check if received
packet is duplicate
o state indicates whether 0

or 1 is expected pkt seq #

o note: receiver can not
know if its last ACK
received OK at sender

rdt: What do we have so far?

o rdt 1.0
o simple transfer over reliable channel (unrealistic)

o rdt 2.0
o bit error prone channel (more realistic)

o checksum (data), ACK/NAK, retransmit

o but what if ACK corrupt?

o rdt 2.2
o checksum (data & ACK)

o retransmit if ACK corrupt

o but what if data OK, but ACK corrupt? -> duplicate

o introduce sequence numbers (more states)

o slimed down: discard NAK by introducing seq. in ACK

o but what if channel looses packets?

3-50Transport Layer

1.0

2.0 …

2.2 …

……

Transport Layer 3-51

rdt3.0: channels with errors and loss

New assumption: underlying
channel can also lose
packets (data or ACKs)
o checksum, seq. #, ACKs,

retransmissions will be of
help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

o retransmits if no ACK received in
this time

o if pkt (or ACK) just delayed (not
lost):

o retransmission will be
duplicate, but use of seq. #’s
already handles this

o receiver must specify seq # of
pkt being ACKed

o requires countdown timer

Transport Layer 3-52

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for

call 0from

above

L

event → transition

transition → action

L = no event/action

…

Transport Layer 3-53

rdt3.0 in action

Transport Layer 3-54

rdt3.0 in action

Transport Layer 3-55

Performance of rdt3.0

o rdt3.0 works, but performance stinks

o ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender =

.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

 network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000

9

R

L
d

trans

Transport Layer 3-56

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

m icrosec

onds

L / R

RTT + L / R
=

Transport Layer 3-57

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased

o buffering at sender and/or receiver

o Two generic forms of pipelined protocols: go-Back-N, selective
repeat

Transport Layer 3-58

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

m icrosecon

ds

3 * L / R

RTT + L / R
=

Increase utilization

by a factor of 3!

Transport Layer 3-59

Pipelining Protocols

Go-back-N: big picture:

o Sender can have up to N
unacked packets in
pipeline

o Rcvr only sends
cumulative acks
o Doesn’t ack packet if

there’s a gap

o Sender has timer for
oldest unacked packet
o If timer expires, retransmit

all unacked packets

Selective Repeat: big pic

o Sender can have up to N
unacked packets in
pipeline

o Rcvr acks individual
packets

o Sender maintains timer
for each unacked packet
o When timer expires,

retransmit only unack
packet

Go-Back-N (GBN) Demonstration

o Protocol Demo (Link)

o http://media.pearsoncmg.com/aw/aw_kurose_net
work_2/applets/go-back-n/go-back-n.html

3-60Transport Layer

http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/go-back-n/go-back-n.html

Chapter 4: Summary

o principles behind transport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer Next:

o flow control

o congestion control

o instantiation and
implementation in the
Internet

o UDP

o TCP

Transport Layer 3-61

Thank you

Any questions?

3-62Transport Layer

