Exercise 3

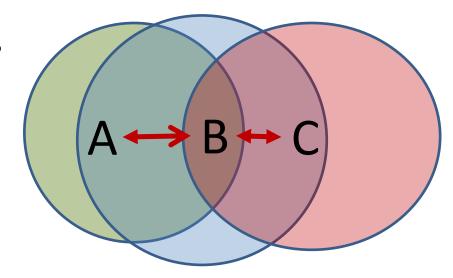
David Koll koll@cs.uni-goettingen.de

Switch Learning Process

- Observation of traffic
 - When receiving a frame, location of sender is learned
 - Record that information as sender/location pair in switch table
- Forwarding Table: Mapping MAC addresses to ports
 - If it does not know where to forward to, it broadcasts the packet on all ports
 - If it gets an answer on one port, it updates the forwarding table (as when receiving a frame)

MAC address	Interface	TTL
12-34-56-78-9A-BC	1	60
AB-CD-EF-12-34-56	3	40

Hubs, Switches, Routers...


- Hub:
 - Sort of dump (e.g., no collision analysis)
 - operates as broadcaster
- Switch: Layer 2 device
 - Connects hosts inside one broadcasting domain
 - uses CSMA/CD for collision detection
 - learning process via switch tables (see slide before)
- Router: Layer 3 device
 - connects different broadcast domains (ARP only works within 1 domain)
 - routing tables

PPP Requirements

- Concept of Layering:
 - Error correction/recovery, flow control, delivery order are all delegated to the upper layers
- That means: PPP only responsible for
 - Framing of packets arriving from upper layer
 - Detection of data errors
 - Detection of link failure

Hidden Terminal Problem

- Appears in wireless networks
 - Two nodes that are not visible to each other (A,C) try to communicate to a node (e.g., an AP) visible to both (B) at the same time -> interference

- Need a solution that limits collisions
 - RTS/CTS in CSMA/CA
- Somewhat Contrary Effect: Exposed Station Problem
 - If you're interested, google it (not part of the lecture)

CSMA/CA Collision Avoidance

Sender:

- Sense channel
 - If idle for a certain amount of time (802.11: DIFS, \sim 50 μ s) transmit entire frame
 - If busy, start exponential backoff (see last weeks exercise)

Receiver:

- If frame received OK, return ACK after waiting a certain amount of time (802.11: SIFS, \sim 10 μs)
 - Hidden terminal problem

CSMA/CA RTS/CTS

- Goal: Avoid collsions of large data frames
- Idea:
 - Use reservation of channel instead of random access
 - Allow collisions of reservation packets (small!)
 - Only reservation packets collide, no data frames!
- Solution: Sender transmits Request-To-Send (RTS) to BS, BS broadcasts Clear-To-Send (CTS) as answer (notifies other nodes in range that channel is busy)